

2

Architecting for
Agile DevOps

We recently discussed the case for Agile Enterprise Architecture (EA),
where the concepts of Agile are adopted into the working practices
of an EA team. What we did not address was the perhaps more basic
question of how an EA team can enable the adoption of Agile DevOps.
These are two different questions, after all. There’s no reason that an
Agile EA team could not work alongside more traditional development
teams if an organization wanted. Thus, in this paper we’ll examine the
architectural approaches to Agile.

What is Agile DevOps?

1.	 Our highest priority is to satisfy the customer
through early and continuous delivery of valuable
software..

2.	 Welcome changing requirements, even late in
development. Agile processes harness change for the
customer’s competitive advantage. .

3.	 Deliver working software frequently, from a couple
of weeks to a couple of months, with a preference
to the shorter timescale.

4.	 Business people and developers must work together
daily throughout the project.

5.	 Build projects around motivated individuals. Give
them the environment and support they need and
trust them to get the job done..

6.	 The most efficient and effective method of
conveying information to and within a development
team is face-to-face conversation.

For those who are already familiar with Agile or have read any of our
previous resources around Agile, feel free to skip this section. First, a
note: Though you will often see the two terms paired together, Agile
and DevOps are separate concepts that can be utilized individually;
there is no requirement that agile teams also use DevOps or vice
versa. However, in general the two are deployed together, and so you
can assume that discussions in this paper can apply equally to Agile
and DevOps.

Though often regarded as quite a new development, the Agile
methodology has now been around for 20 years, after being first
defined in 2001. Initially a simple statement of development principles,
it has evolved into the following 12 principles:

33

As you can see, it is a software development philosophy, and this
is where it has found the most use. Nonetheless, there have been
attempts to adapt Agile to the wider organization, though it has not
spread quite as well.

In a more practical sense, the Agile philosophy aligns with a number
of actions and activities that will be familiar to many. Perhaps the
most well known are the Scrum framework and its Sprint iterations. A
Sprint is a short unit of development, typically one or two weeks, with
specifi c goals, while the Scrum is the overarching framework which
aims to deliver value through transparency and adaptability. Scrum
teams build products in iterations of Sprints.

Another popular Agile framework is Kanban. Kanban was originally
part of the Lean methodology pioneered by Toyota, and literally
refers to the colored cards that Toyota would use to direct resources
around their factories. In Agile, Kanban is used to match development
capacity to their current work-in-progress.

4

7.	 Working software is the primary measure of
progress. .

8.	 Agile processes promote sustainable development.
The sponsors, developers, and users should be able
to maintain a constant pace indefinitely.

9.	 Continuous attention to technical excellence and
good design enhances agility.

10.	Simplicity - the art of maximizing the amount of
work not done is essential. .

11.	 The best architectures, requirements, and designs
emerge from self-organizing teams

12.	At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts its
behavior accordingly.

4

5

As you can see, it is a software development philosophy, and this
is where it has found the most use. Nonetheless, there have been
attempts to adapt Agile to the wider organization, though it has not
spread quite as well. In a more practical sense, the Agile philosophy
aligns with a number of actions and activities that will be familiar to
many. Perhaps the most well known are the Scrum framework and its
Sprint iterations. A Sprint is a short unit of development, typically one
or two weeks, with specific goals, while the Scrum is the overarching
framework which aims to deliver value through transparency and
adaptability. Scrum teams build products in iterations of Sprints.

Another popular Agile framework is Kanban. Kanban was originally
part of the Lean methodology pioneered by Toyota, and literally
refers to the colored cards that Toyota would use to direct resources
around their factories. In Agile, Kanban is used to match development
capacity to their current work-in-progress.

5

DevOps, meanwhile, outlines a process that aims to speed up
software development by integrating the development and IT
operations teams – hence the name. According to Microsoft: “Rooted
in stability, consistency and planning, the DevOps culture seeks to
identify new ways to improve and streamline processes. As a result,
DevOps focuses on maximising effi ciency, identifying programmable
processes and increasing automation.”

DevOps and the various Agile frameworks are all aimed at improving
the speed and responsiveness of software development and so it’s no
surprise that they are often paired together. According to IBM:

“Agile evolved the “big bang”
approach into a series
of “smaller snaps” which
also compartmentalized
risks. The more effectively
these agile development
practices accelerated
software development
and delivery, the more
they exposed still-siloed
IT operations as the next
bottleneck in the software
delivery lifecycle. So,
DevOps grew out of agile.”

66

7

Confl icts between Agile and EA

Given the above, it’s easy to see where the difficulties arise with
EA. Both EA and Agile encompass a wide array of different ideas,
frameworks, and processes, but at a base level we can say that EA is
focused on delivering medium and long term digital transformation,
while Agile looks to short-term, incremental change that responds to
customer needs.

EA places an emphasis on the architecture process and clear
documentation, while Agile de-emphasizes those in preference
of individuals, interactions and user stories. Similarly, Agile’s
implementation principle of welcoming changing requirements are
directly opposed to the Enterprise Architecture approach. Agile
also cites simplicity as a key implementation principle, but one of
the key roles of EA is managing very complex systems. Enterprise
Architecture is also typically focused on the enterprise itself and its
key stakeholders, whereas Agile explicitly places the priority on the
end customer.

8

Similarities Between Agile and Enterprise

Probably the two key similarities between the Agile approach to
technology and the Enterprise Architecture approach are the focus
on goals and outcomes, and the effort to simplify where possible.
Both Agile and EA seek to rationalize unnecessary technology and
eliminate ineffi ciency. Both approaches are also outcome driven,
seeking to satisfy the end user and achieve the goals of the process.

Cooperation between business and development is a key motivator
of EA and Agile, and both stress the need to continually keep
assets up to date and relevant, whether focused on roadmaps and
technology architectures or on products and services themselves.
Sustainable development can also be seen in the goals of Enterprise
Architecture. The creation of roadmaps and management of business
capabilities are a form of insuring that the enterprise anticipates
the future and can rapidly change to meet challenges. The primary
goal is to enable a proactive response in place of a reactive one, but
proactive addressing of changes and requirements is part of how
sustainability is implemented.

9

How does EA help Agile?

By using Enterprise Architecture as a framework on which to
implement Agile solutions, it is possible to integrate the two.
Enterprise Architecture thus becomes one of the customers in an Agile
development cycle – adding in requirements to both the Product and
Sprint Backlogs. More generally, EA can bring the following benefits
to Agile:

Convert Business Requirements into
Agile projects

Communication between business and IT
is difficult; EA acts as a bridge between
the two, taking high level business
requirements and translating them into
actionable insights for agile teams.

EA lays the Foundations for Agile

Agile projects begin with Iteration Zero,
which lays out the scope of work and
the setup of the project. High-level
architecture can provide the foundation
for iteration zero, helping to prevent
projects from becoming siloed.

EA can Scale Agile

Agile DevOps is great for startups
and small teams but doesn’t prescribe
any methods for scaling beyond that.
Whether through a framework like SAFe
or other methods, EA can help to enable
agile strategies to expand across an
enterprise.

Adjusting EA for Agile

As mentioned above, “Agile EA” has
become a goal of many fi rms. EA can be
very flexible, easily allowing for multiple
approaches and internal cultures, which
make it simple to tailor EA to Agile.

Focus on Value, not Infrastructure

Agile teams need to spend time on
delivering improvements to end-
users, not building out the necessary
infrastructure for their development
operations. EA can take care of
infrastructure.

Architects Align Agile Teams
withEnterprise Vision

For enterprise-level work, new
developments can often cut across
multiple systems or create new
systems; architects can ensure these
developments continue to align with the
vision of the architecture.

Practical Steps to Integrate EA with Agile

How do organizations achieve the above list of benefits, considering
the conflicts that the two concepts face? The general outline of how
architecture can help to deliver Agile should already be clear: EA
should function as a connector, helping to convert business strategy
into agile requirements and ensure that Agile teams remain integrated
with the wider business and do not become siloed.

More specifically, EA in an Agile organization should involve much
closer collaboration between architects and development teams.
A centralized EA function would not work well in such a situation.
Instead, Enterprise architects should be embedded directly in Agile
teams, and if feasible some architects should be “Agile Architects” that
can function as both agile development staff and architectural staff.
A Lead Agile Architect sits at the top of the EA function, helping to
facilitate Agile across the enterprise while acting as ‘product owner’
for EA, leading the creation of necessary architectures for Agile.

10

While people will play a huge role, EA also places a lot of emphasis on
documentation. This can clash with the agile mindset. One way around
this is to make use of user stories, converting traditional architecture
documentation into architecture user stories, thus enabling guidance
for Agile teams even without direct architect oversight. In Agile, the
user story is an informal way of describing a product feature from the
point of view of an end-user (often a customer). Thus, an architecture
user story might be written from the PoV of a Solution Architect
or other develop who implements architecture, and describe the
features of said architecture in an informal manner.

One question that an EA team would need to answer is the position
and role of Solution Architects in the Agile organization. In many
respects, Agile teams can take over the traditional responsibilities
of the solution architect. In one sense then, are solution architects
required? Could they simply be rolled up into agile teams?
Alternatively, could solution architects play a role in reconciling
the developments of agile teams with the existing architecture?
This question rests heavily on the position of the firm. An Agile
company that is seeking to scale up with the help of EA is likely to
take the former position, in which solution architects are somewhat
unnecessary, whereas an enterprise hoping to adopt Agile may favor
the latter.

11

1212

Architects are also well positioned to take ownership of large-scale
technology initiatives, often concerning the technology infrastructure
that helps to enable Agile teams. For example, cloud migration could
be a complex, large scale project that is poorly suited to an Agile team
and best left to enterprise architecture. Agile teams can place a high
demand on Architecture Review Boards (ARB), and so Gartner suggest
switching to a just-in-time architecture assurance model to ensure
that the ARB is able to meet the needs of the organization. This pivots
the ARB from a rigid review schedule towards a fl exible system that
is ready to review and recommend as and when Agile teams have the
need.

Another Gartner suggestion is to move architecture away from
document-based reference architectures, towards reference
implementations. A reference implementation could be a pre-built
virtual container or API library that developers can immediately
deploy, rather than having to expend time to read and understand
a reference architecture. This bakes architecture principles into
development work without any barriers, preserving the speed
advantage of Agile. Of course, this is only applicable to lower level
architectures in the technology sphere, as you certainly can’t deploy
virtual containers to the business or strategy layers!

Summary

In this eBook, we have looked at how enterprises can adopt both
Agile and Enterprise Architecture without causing conflict or
inefficiency. First, we discussed the definition of Agile and the often
paired concept of DevOps, identifying the 12 guiding principles of the
Agile philosophy. From there we were able to detail how Agile and
EA are similar and how they are different, with time horizon and scale
being the crucial issues.

Despite these differences, we detailed 6 key benefits that could arise
from the integration of EA and Agile, noting that EA can help prevent
Agile teams from becoming siloed, and align their development with
wider business goals. Finally, we looked at some practical advice for
Enterprise Architects and the EA practice, highlighting suggestions
such as architecture user stories and agile architects. What is
hopefully clear is that there is no reason Agile and EA cannot both
play important roles for organizations, and each one can enhance the
other.

1313

Enable Agile DevOps In
Your Team

Book a Demo

Book a tailored demo today to find out how the iServer Suite delivers faster, smarter
decisions that enable transformation

https://www.orbussoftware.com/book-a-demo?utm_source=resource&utm_medium=resource&utm_content=architecting-for-agile-devops&utm_campaign=book-a-demo

© Copyright 2021 Orbus Software. All rights reserved.

No part of this publication may be reproduced, resold, stored in a retrieval
system, or distributed in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior permission of the

copyright owner.

Such requests for permission or any other comments relating to
the material contained in this document may be submitted to:

marketing@orbussoftware.com

Orbus Software | Floor 4, 60 Buckingham Palace Road, SW1W 0RR | +44 (0) 20 3824 2907 | enquiries@orbussoftware.com | www.orbussoftware.com

