

## Information Security Integration Within the Enterprise Reference Architecture Model

Part 2 - Implementation

**Guy B. Sereff** 22 August 2013



### **About The Presenter**

#### **Guy B. Sereff**

- Author, Speaker and Technology Practitioner
- Vice President / Enterprise Architecture
- Technology Industry Experience
  - Application Research & Development (12 years)
  - Large-Scale Technology Management (8 years)
  - Global Enterprise Architecture (7 years)
- Enterprise Architecture Domain Experience
  - Business Architecture
  - Information Architecture
  - Application Architecture
  - Solution Architecture
  - Architecture Governance
- Pragmatic Blend of Strategy and Tactical Execution



http://www.linkedin.com/in/guysereff



### **Agenda**

#### **Recap of Fundamental Definitions and Relationships**

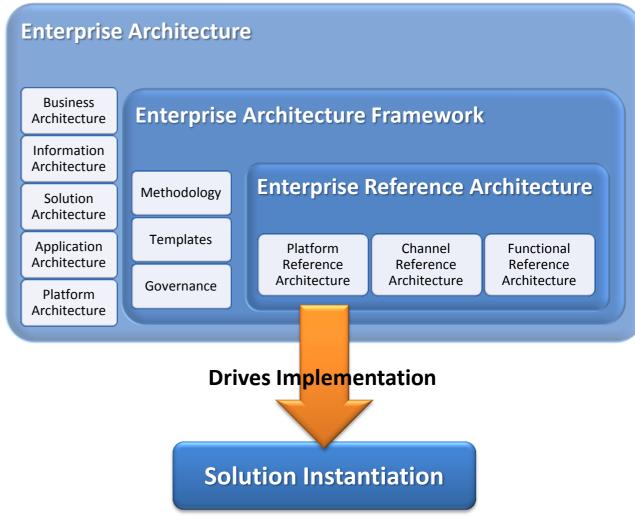
- Enterprise Architecture
- Information Security Architecture

## **Integrating Information Security into the Enterprise Reference Architecture Model**

- Establish Information Security Architecture as its own Reference Architecture Domain
- Add Information Security Attributes to the Reference Architecture Domain Template
- Integrate Information Security Into the Delivery Process
- Implement an on-going Information Security Audit Program

#### **Recommended Next Steps**

**Questions and Comments** 

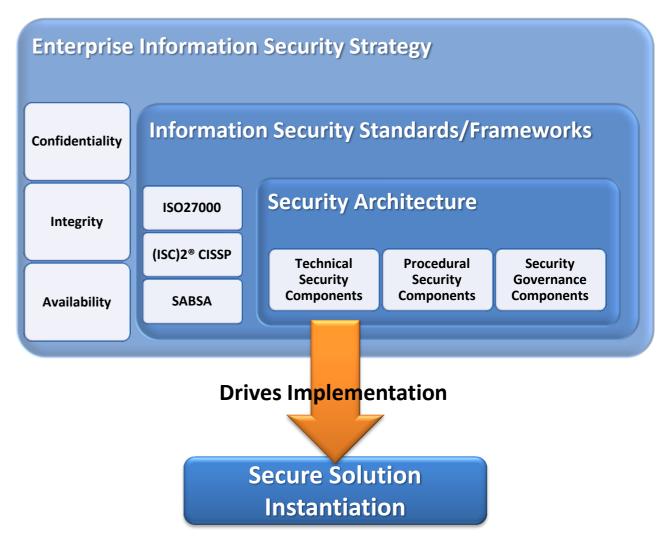





### **Recap: Enterprise Architecture**

Strategy-Centric cross-cutting view of the organization's goals, objectives, existing capabilities, competitive advantages and external disruptive forces in order to formulate a strategy and align resources towards desired outcomes and objectives

The purpose of **Enterprise Architecture** is to <a href="mailto:optimize">optimize</a> across the enterprise the often <a href="fragmented">fragmented</a> legacy of processes (both manual and automated) <a href="mailto:into an integrated environment">into an integrated environment</a> that is <a href="mailto:responsive to">responsive to</a> change and supportive of the <a href="mailto:delivery">delivery of the business strategy</a>.\*






### **Recap: Enterprise Information Security Architecture**

Risk-Centric view of Information Security across all aspects of the enterprise used to derive risk mitigation strategies, both from outside and within the organization's digital perimeter

Security is all about protecting business goals and assets. It means providing a set of business controls that are matched to business needs, which in turn are derived from an assessment and analysis of business risk. The objective in risk assessment is to prioritize risks so as to focus on those [risks] that most require mitigation.\*



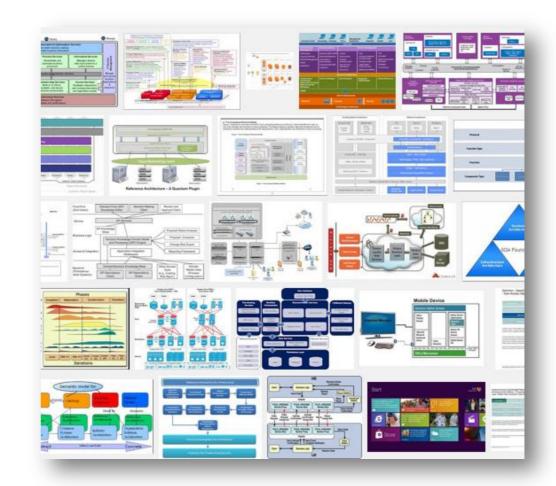


## **Enterprise Reference Architecture Model Security Integration**

- 1. Establish Information Security Architecture as its own Reference Architecture Domain
- 2. Add Information Security Attributes to the Reference Architecture Domain Template
- 3. Integrate Information Security Into the Delivery Process
- 4. Implement an on-going Information Security Audit Program






### **Reference Architecture**

Pre-populated *Domain Reference Architecture*Artifacts published within the organization and available for anyone needing to deploy the capabilities captured within that domain

Wide variation in industry practices around what constitutes a Reference Architecture

- Content and Meta Data
- Contextual Domains
- Level of Abstraction
- Level of Coverage
- Centralized Monarchy vs. Decentralized Federation
- Conformance Requirement

Templates can help structure / standardize content Commercial Models and Templates available that can be adopted / adapted for use





### **Typical Reference Architecture Domains**

# Operating Platform

- Mainframe
- Mid-Range
- Cloud / Elastic
   Computing
- Personal Device

# Software Delivery

- Application Development Suite
- Middleware Integration

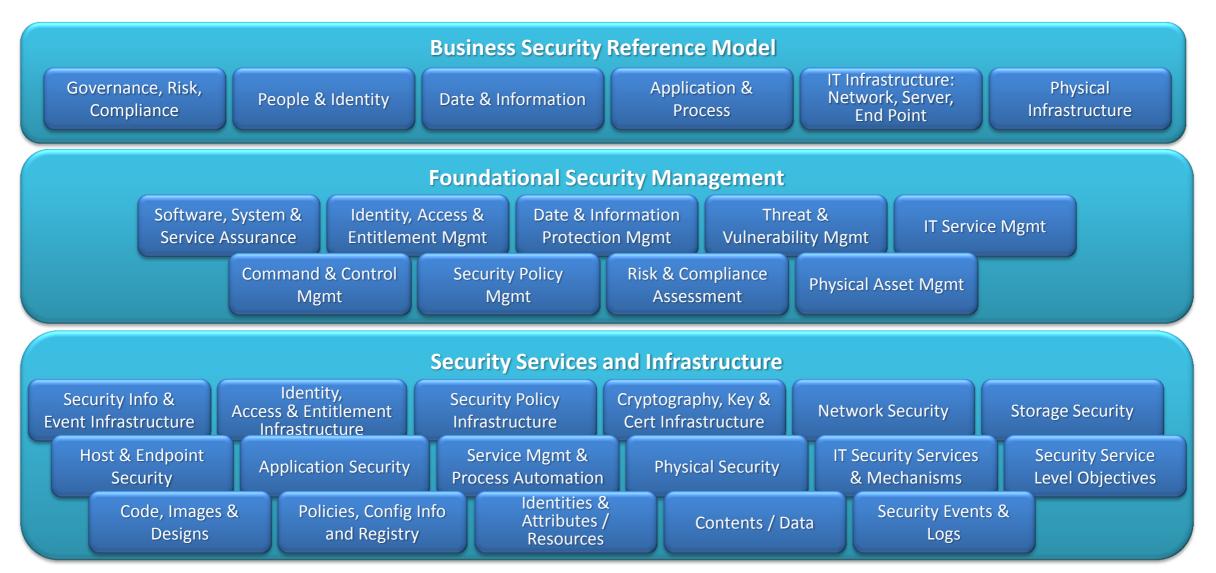
Promote Information Security to a Reference Architecture Domain

#### **Functional**

- Financial Transaction Processing
- Sales Force
   Automation

ntory agement rance Claim essing

#### Non-Functional


- EnterpriseService Bus
- Data Analytics
- Application Program
   Interfaces
- InformationSecurity

### Delivery Channel

- Contact Center
- Point of Sale
- Mobile
- Kiosk



### **IBM Security Blueprint Overview**\*





### **Common Reference Architecture Components**

#### **Domain Meta Data**

- Description
- Version
- Stakeholders

#### **Domain Scope**

- In Scope / Out of Scope
- Cross-Domain Dependencies
- Critical Success Factors

#### Strategy

- Disruptive vs. Adoptive Approach
- Strategic End State
- Targeted Competency Level

#### **Business Capabilities**

- Client-Facing Functionality
- Transactional Tasks
- Competitive Analysis

# Cryptography, Key & Certificate Infrastructure

EITICIETICY DITVETS

#### **System Capabilities**

- Functional
- Non-Functional
- Information Flow

#### **Architectural Approach**

- Guiding Principles/Patterns
- Platform Independent Models
- Applied Industry Model(s)

#### **Technical Components**

- Platform Specific Model
- Approved Components
- Buy/Hold/Sell Technical Assets

#### **Conformance Roadmap**

- Current State Analysis
- End State Conformance Timeline
- Program Alignment



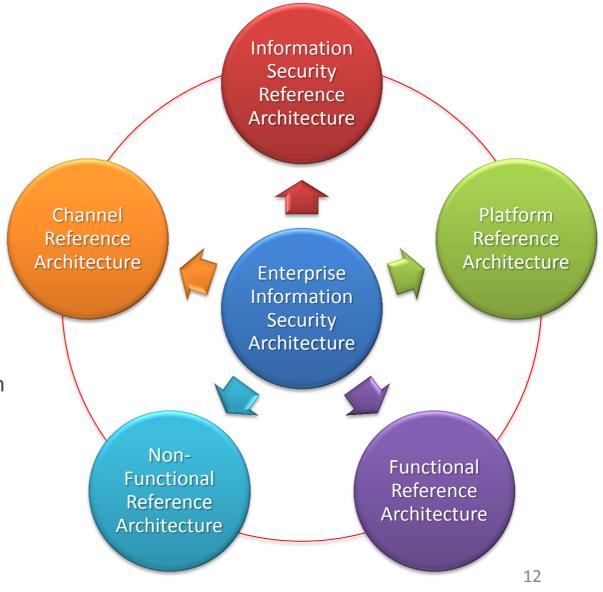
## **Enterprise Reference Architecture Model Security Integration**

- 1. Establish Information Security Architecture as its own Reference Architecture Domain
- 2. Add Information Security Attributes to the Reference Architecture Domain Template
- 3. Integrate Information Security Into the Delivery Process
- 4. Implement an on-going Information Security Audit Program





### **Add Information Security Considerations to all Domains**


Having an Information Security Reference Architecture does <a href="mailto:not">not</a> replace the need to address Information Security considerations across all other Reference Architecture domains

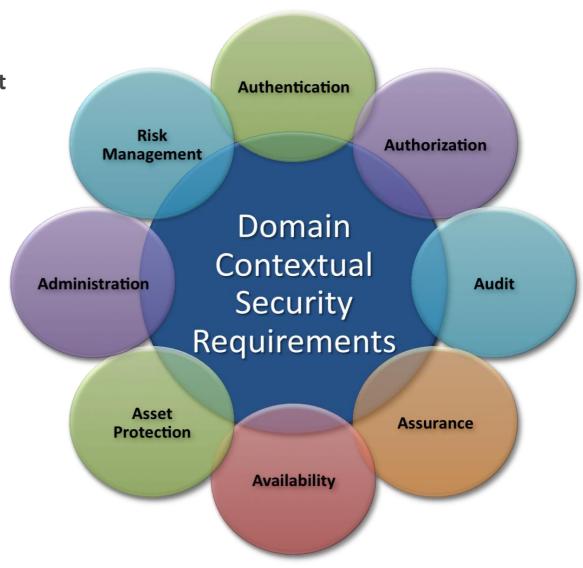
Having Information Security features in other domains does <a href="https://network.com/not/negate-the-need">not negate the need for a separate Information Security</a>
Reference Architecture

**Both** approaches are required and are complimentary

- Move common security characteristics up into the broader Information Security domain
- Capture contextual security metadata within the domain reference architecture definition

TIP: Re-evaluate current Reference Architecture template Information Security considerations and refactor per current needs of the organization






## **Adapt TOGAF®\* Information Security Areas**

One example would be to assess each Reference Architecture Domain against the TOGAF recommended list of Information Security Areas on a 2-Dimensional scale:

**Applicability** (Applicable, Not Applicable) **Compliance** (Compliant, Non-Compliant)

- Authentication *Identity Substantiation*
- Authorization Capability Enforcement
- Audit Forensic Data Support
- Assurance Policy Validation
- Availability Functional Continuity
- Asset Protection Prevention from Unauthorized use
- Administration *Policy Implementation*
- Risk Management Vulnerability Assessment





### **Additional Reference Architecture Considerations**

Where does this domain align with the Information Security Reference Architecture Model?

- Current State
- End State
- Roadmap

Where does this domain *not* align with the Information Security Reference Architecture Model?

What unique Information Security capabilities or considerations does this domain require?

What inherent risks are associated with this domain relative to:

- Business
- Operations
- Technology

What are the Security Incident Metrics for this domain (i.e. Realized Risk Profile)?

- Lifetime Incidents

  Count by Reporting Period, Net Economic Loss
- Severity Stratification % High, % Medium, % Low
- Incident Velocity

  Accelerating, Maintaining, Decelerating

What other domains are potentially impacted from an Information Security perspective?



### **Information Security Assessment Heat Map**

Full Conformance
Partial Conformance

Undetermined

**Nominal Risk** 

Significant Risk

| Reference<br>Architecture | Authentication | Authorization | Audit | Assurance | Availability |         |
|---------------------------|----------------|---------------|-------|-----------|--------------|---------|
| Operating<br>Platform     |                | <u> </u>      |       |           |              |         |
| Software<br>Delivery      |                |               |       |           |              | $\circ$ |
| Functional                |                |               |       |           |              |         |
| Non-<br>Functional        |                |               |       |           |              | $\circ$ |
| Delivery<br>Channel       |                |               |       |           |              |         |



## **Enterprise Reference Architecture Model Security Integration**

- 1. Establish Information Security Architecture as its own Reference Architecture Domain
- 2. Add Information Security Attributes to the Reference Architecture Domain Template
- 3. Integrate Information Security Into the Delivery Process
- Implement an on-going Information Security Audit Program





### **Integrate Information Security Into the Delivery Process**

Six Sigma taught us not to inspect quality in something after the work has been done but to build quality into the process to begin with - the same holds true for Information Security

Don't wait to review Quality Assurance (QA) results or Vulnerability Assessment (VA) findings to see if Information Security considerations were cared for

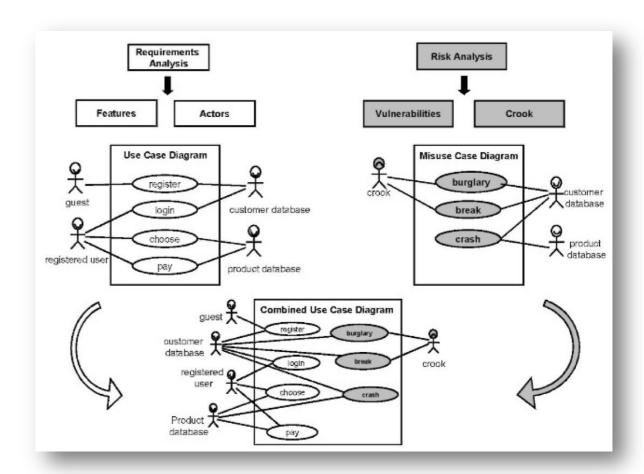
Problems found late in the delivery process are expensive to fix and certify, leading to potential 'scope negotiation' where discovered risks are intentionally left unmitigated in an effort to protect the delivery date

Information Security considerations must be explicitly cared for and validated at each milestone throughout the entire Systems Development Life Cycle (SDLC)

To be most effective, <u>information security must be</u> <u>integrated into the SDLC from system inception</u>. Early integration of security in the SDLC enables agencies to maximize return on investment in their security programs, through:

- <u>Early identification and mitigation of security</u>
   <u>vulnerabilities</u> and misconfigurations, resulting in lower
   cost of security control implementation and vulnerability
   mitigation;
- Awareness of potential engineering challenges caused by mandatory security controls;
- Identification of shared security services and reuse of security strategies and tools to reduce development cost and schedule while improving security posture through proven methods and techniques;
- <u>Facilitation of informed</u> executive decision making through comprehensive <u>risk management</u> in a timely manner.\*




### **CORAS Model-Based Risk Assessment**\*

Most requirement gathering efforts focus on 'happy path' use cases, hoping to cram as many business capabilities into the release window as possible

Model Based Security Analysis is an approach that seeks to identify and model mis-functionality and misuse cases early on in the definition phase

CORAS Model-Based Risk Assessment method is designed to provide model-driven analysis of critical security components

- Context Identification
- Risk Identification
- Risk Analysis
- Risk Evaluation
- Risk Treatment





### **Secure Quality Requirements Engineering**

Information Security becomes very difficult to replace or significantly enhance once its host application makes its way into the production

Software Engineering Institute (SEI) established the Security Quality Requirements Engineering (SQUARE) approach in an effort to move security considerations further forward in the delivery life cycle\*

Nine-Step Approach that identifies Inputs, Technologies, Participants and Outputs

SQUARE could be overlaid against most SDLC models to orchestrate security element integration with minimal disruption to existing processes

|  |                                                                 |                                                                                                                          | Step                          |                                                                                               | Input                                                     | Tec                                       | hniques                                                                                                          | Participants                                                                          |                                                                              | Output                                |    |                        |
|--|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------|----|------------------------|
|  |                                                                 | 1 Agree on definitions                                                                                                   |                               | ns                                                                                            | Candidate definitions<br>from IEEE and other<br>standards |                                           | actured interviews,<br>us group                                                                                  | Stakeholders,<br>requirements team                                                    |                                                                              | Agreed-to definitions                 |    |                        |
|  |                                                                 | 2 Identify assets and security goals                                                                                     |                               | Definitions, candidate<br>goals, business<br>drivers, policies and<br>procedures,<br>examples | ses                                                       | ilitated work<br>sion, surveys,<br>rviews | Stakeholders,<br>requirements<br>engineer                                                                        |                                                                                       | Assets and goals                                                             | ı                                     |    |                        |
|  | 3 Develop artifacts to support security requirements definition |                                                                                                                          | to                            | Potential artifacts<br>(e.g., scenarios,<br>misuse cases,<br>templates, forms)                |                                                           | rk session                                | Requirements<br>engineer                                                                                         |                                                                                       | Needed artifacts:<br>scenarios, misuse<br>cases, models,<br>templates, forms |                                       |    |                        |
|  |                                                                 | 4                                                                                                                        | Perform risk<br>assessment    |                                                                                               | Misuse cases,<br>scenarios, security<br>goals             | met<br>anti<br>aga<br>org<br>tole         | k assessment<br>hod, analysis of<br>cipated risk<br>inst<br>anizational risk<br>rance, including<br>eat analysis | Requirements<br>engineer, risk ex<br>stakeholders                                     | pert,                                                                        | Risk assessment<br>results            | l  |                        |
|  |                                                                 | 5                                                                                                                        | Select elicitation techniques |                                                                                               | Goals, definitions,<br>candidate<br>techniques, expertise | Wo                                        | rk session                                                                                                       | Requirements<br>engineer                                                              |                                                                              | Selected elicitation techniques       | ı  |                        |
|  | Elicit se                                                       | Elicit security                                                                                                          |                               | Art                                                                                           | tifacts, risk                                             |                                           | Joint Appl                                                                                                       | cation                                                                                | St                                                                           | akeholders                            |    | Initial cut at securit |
|  | require                                                         | inci                                                                                                                     | its                           | 7.7                                                                                           | sessment result:<br>lected technique                      |                                           | Developm<br>interviews<br>model-bas<br>analysis, o<br>lists of reu<br>requireme<br>document                      | surveys,<br>sed<br>checklists,<br>sable<br>nts types,                                 | re                                                                           | cilitated by<br>quirements<br>agineer |    | requirements           |
|  |                                                                 |                                                                                                                          |                               |                                                                                               |                                                           | dod                                       | cument reviews                                                                                                   |                                                                                       |                                                                              |                                       | -1 |                        |
|  |                                                                 | 7 Categorize requirements as to level (system, software, etc.) and whether they are requirements or o kinds of constrain |                               | d                                                                                             | Initial requirements, architecture                        | star                                      | rk session using a<br>ndard set of<br>egories                                                                    | Requirements<br>engineer, other<br>specialists as ne                                  | eded                                                                         | Categorized requirements              |    |                        |
|  |                                                                 |                                                                                                                          | Prioritize requirements       |                                                                                               | Categorized requirements and risk assessment results      |                                           | pritization methods<br>h as Triage, Win-<br>n                                                                    | Stakeholders<br>facilitated by<br>requirements<br>engineer                            |                                                                              | Prioritized requirements              |    |                        |
|  |                                                                 | 9 Inspect requirements Prioritized requirements, candidate formal inspection technique                                   |                               | Inspection method<br>such as Fagan, peer<br>reviews                                           |                                                           | Inspectionteam                            |                                                                                                                  | Initial selected requirements, documentation of decision-making process and rationale |                                                                              |                                       |    |                        |

8/22/13 \*SEI, © 2012





### **TOGAF®** Architecture Contract\*

Architecture Contracts are agreements between the architecture community and the various constituents tasked with solution delivery for architecturally significant efforts

Adapt the Architecture Contract process to specifically address Information Security design elements and their alignment to the Enterprise Information Security Reference Architecture

Create and ratify the Information Security aspects of the Architecture Contract <u>before</u> solution design begins

Validate solution conformance to the Information Security Architecture Contract aspects <u>before</u> production load authorization is granted



#### **Best Practices:**

- 1. Move Information Security Architecture and design treatments up as early in the delivery life cycle as possible
- 2. Ensure that Information Security is cared for *throughout* the delivery process
- 3. Create a governance model that holds participants accountable for delivering secure solutions aligned to the Information Security Reference Architecture model





### **Enterprise Reference Architecture Model Security Integration**

- Establish Information Security Architecture as its own Reference Architecture Domain
- 2. Add Information Security Attributes to the Reference Architecture Domain Template
- 3. Integrate Information Security Into the Delivery Process
- 4. Implement an on-going Information Security Audit Program





### **Audit Information Security Architecture Alignment**

Most organizations have some form of an Information Security Audit and Control process in place, testing various aspects of policy adherence and enforcement around the institution

Go a step beyond to audit significant projects, programs and initiatives against the prevailing Information Security Reference Architecture model

Use findings to educate and address recurring patterns of non-conformance as well as assess the level of difficulty in implementing the Information Security Reference Architecture

Integrate additional post-design Reference
Architecture conformance testing specifically
calculated to validate Information Security Reference
Architecture adherence

## Benefits from an effective Information Security Governance and Audit Practice\*:

- Strategic Alignment
- Risk Management
- Business Process Assurance / Convergence
- Value Delivery
- Resource Management
- Performance Measurement

# Benefits of aligning solutions to the Information Security Reference Architecture:

- Consistent Application of Information Security Policies
- Reduced Solution Complexity, Redundancy and Variation
- Measurable Progression Towards Strategic End-State



## **C-I-A Triad: Confidentiality, Integrity, Availability**\*

#### The C-I-A Triad consists of:

- Confidentiality
   Protection from Unauthorized Access
- Integrity
   Assurance of Completeness / Correctness
- Availability
   Effective and Efficient Operational Support

C-I-A Triad can be adapted into an assessment of an application's alignment to the Enterprise Information Security Reference Architecture Model

- Validate the reference architecture itself
- Validate the solution being compared to the reference architecture

Deviation scores reflect the number of deployed elements that differ from their corresponding approved elements

| Objective       | Benefit                                       | Risks                                                                       | Reference<br>Architecture                                                    | Application Architecture                                      | Assessment                         |
|-----------------|-----------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------|
| Confidentiality | Protection from<br>Unauthorized<br>Access     | Fraud, Identify Theft, Economic Loss, Corporate Espionage                   | Inventory of Approved Elements that Ensure Confidentiality (E.G. Encryption) | Inventory of Deployed Elements that Ensure Confidentiality    | Confidentiality<br>Deviation Score |
| Integrity       | Assurance of<br>Completeness /<br>Correctness | Financial Error,<br>Inaccurate<br>Reporting,<br>Impaired Decision<br>Making | Inventory of Approved Elements that Ensure Integrity (E.G. Business Rules)   | Inventory of<br>Deployed<br>Elements that<br>Ensure Integrity | Integrity<br>Deviation Score       |
| Availability    | Effective and Efficient Operational Support   | Reduced<br>Operations<br>Ability, Loss of<br>Sales,                         | Inventory of Approved Elements that Ensure Availability (E.G. Failover)      | Inventory of Deployed Elements that Ensure Availability       | Availability<br>Deviation Score    |



### ITIL Security Management Evaluation Process\*

Multi-faceted evaluation approach related to Implementation (Self Assessment, Internal Audit, External Audit) and Operation (Security Event Logging)

Extend ITIL process to analyze findings to determine if incident involved an Information Security Reference Architecture element

- Yes: Corrective Action Plan to address the Reference Architecture
- No: Accelerate Information Security Reference Architecture conformance velocity

#### Two-fold benefit:

- Accelerates Information Security Reference Architecture adoption
- Establishes a pattern of continuous improvement by hardening the shell and providing insight into how well the Information Security components are performing





### **Recommended Next Steps**

- Make Information Security Architecture a <u>vital</u> part of the Enterprise Architecture Model
- Establish an Information Security Reference Architecture Domain
- Address Information Security Architecture both vertically (intra-domain) and horizontally (interdomain)
- Engrain Information Security into every aspect of the solution delivery process
- Assume the work is never done; continually assess the threat landscape and adapt
- Follow a structured Information Security Audit program to assess Reference Architecture effectiveness and adoption



TIP: Weave Information Security into the core fabric of all enterprise architecture disciplines by establishing a discrete Information Security Reference Architecture and aligning all other reference architecture domains to it. Move beyond technical implementation and get security awareness engrained into the engineering culture of the organization.



### **Any Questions?**









Download this presentation and accompanying white paper from: **www.orbussoftware.com/downloads** 



### **Thank You!**