
© Orbus Software 2013

White Paper
Modeling Transactions
with BPMN 2.0

IT experts usually associate the term transaction with distributed
database systems operations. In this context, transactions play
a crucial role to maintain the integrity of data. A single database
transaction consists of several independent units of work, each
reading or writing information to a database. When a transaction
if finished it is important to ensure that the corresponding units of
work leave the database in a consistent state.

Similar to databases, a transaction can also occur in business
processes. A business process consists of a series of tasks which
are performed in a predefined order. In some cases, the tasks are
interrelated in a way which requires successful execution of several tasks
in order to fulfill a business objective. In the opposite case (if only some
of the required tasks are executed) a serious problem might occur.

The difference between database transactions and business process
transactions is in the corresponding implementations. Database
transactions are usually implemented with “two-phase commit protocol”
which requires almost immediate execution of transactional activities.
On the other hand, a business process can be executed over several
days or even months and this requires another transactional handling.
This article will focus on business transactions and their representation in
BPMN 2.0.

Gregor Polančič

WP0077 | May 2013

Gregor is an assistant professor at the

University of Maribor and has a decade of

experience in BPMN since its first version

in 2004.

He participated in the development of one

of the first BPMN modeling utilities - a

package of plugins for Visio, which were

introduced in 2004 and is the main author

of the first BPMN poster.

In 2008, he was one of the first authors

who published an article dedicated to the

experiences and practical use of BPMN.

The article was published in “BPM and

Workflow Handbook” in association with

the Workflow Management Coalition

(WfMC).

He is currently researching BPMN from

different technological and user aspects.
Access our free, extensive library at
www.orbussoftware.com/downloads

© Orbus Software 2013

What is a Transaction?
Let us explain a transaction in the following example in which a person
intends to transfer money to another person (perhaps at another bank)
by using a bank transfer. In case both persons possess 1,000€ before
the bank transfer, Person ‘A’ would possess 900€ and Person ‘B’ would
possess 1,100€ at the end of successful 100€ bank transfer (Figure 1).

At first sight, the bank transfer looks like a
simple task, however the internal view of a
bank transfer is more complex (Figure 2). When
money is transferred between two accounts
(e.g. between two banks with two distinct
information systems), two interrelated activities

occur. One activity withdraws money from ‘Person A’ account, where
another activity deposits money into ‘Person B’ account. Besides, the
balances of both accounts need to be updated.

The negative scenario of the bank transfer occurs if any of these activities
are unsuccessful:

 • If money is withdrawn from ‘Person A’ account where the money isn’t
deposited into ‘Person B’ account.

 • If money is deposited into ‘Person B’ account where no money is
withdrawn from ‘Person A’ account.

In both negative scenarios the resulting
balances of bank accounts are incorrect
meaning that money transfer between
accounts can be correctly completed only
when the withdrawal, deposit, and balance
update are done consecutively and all of them
are executed without any errors. Such “a series
of tasks that are meaningful only when all of the
tasks are completed appropriately” are called
a transaction. A transaction is defined by an
execution rule that sets the execution results
of tasks in a transaction to be, as a whole,
whether “all tasks are executed” or “none of
them is executed.” The tasks are tentatively

executed first, and if all the tasks are successfully completed, the
process continues. Otherwise, all of them are undone and started
over again.

1,000€

500€
Person A

1,000€

1,100€
Person B

Transfer 100€

Figure 1: External view of a bank transfer

Person A
Bank Account

1,000€ - 100€ = 900€

Person B
Bank Account

1,000€ + 100€ = 1,100€
Figure 2: Internal view of a bank transfer

Two phase commit protocol works following: First phase checks if

all IT systems can perform required transactional activities. If yes,

the activities are performed (second phase) otherwise none of the

activities is performed.

© Orbus Software 2013

Transactions in BPMN 2.0
BPMN provides built-in support for business
transactions. A business transaction differs
from a database transaction, because its
activities are not locked while the transaction
is in progress. Instead each activity in the
transaction executes normally in its turn, but
if the transaction as a whole fails to complete
successfully, each of its activities that have
already completed are undone by calling a so-
called compensating activity.

BPMN transactions are represented as special
sub-processes, either collapsed or expanded.
A transactional sub-process (transaction)
visually differs from a normal sub-process
(sub-process), because the borders consist of
double lines.

Modeling a BPMN transaction differs from modeling a sub-process in the
relationships to other process elements as well as the interior.

External view
A transaction is a special sub-process, which is always part of a higher
level process or sub-process. Similar to a sub-process, a transaction
is “triggered” by a token which arrives at the incoming sequence flow.
However, on the resulting side, a transaction differs from a normal sub-
process since it can result in three outcomes (Figure 4):

 • Successful completion. It is modeled with a normal sequence flow
that leaves the transaction. In this case, all tasks in a transaction
are completed successfully, meaning that the transaction and the
corresponding process will proceed normally.

 • Failed (unsuccessful) completion (Cancel). Failed completion is
modeled with a sequence flow, which starts at a cancel intermediate
event, attached to the boundary of a transaction. This scenario
occurs if any of the pre-determined criteria of failure of the transaction
is satisfied or in case an ‘Abort’ message is received from outside
of the transaction. In both cases the non-normal flow is executed
instead of the normal flow, meaning that the normal business
process is not executed, and none of the tasks in the transaction are
completed.

 • Hazard (Exception). Hazard is modeled with a sequence flow, which
starts at an error intermediate event, attached to the boundary of a
transaction. A hazard means that something went terribly wrong and

Figure 3: Collapsed (left) and expanded (right)

transactional sub-process

BPMN 2.0 Specification defines a
Transaction as the following:

“A sub-process that represents a set of coordinated activities

carried out by independent, loosely-coupled systems in

accordance with a contractually defined business relationship.

This coordination leads to an agreed, consistent, and verifiable

outcome across all participants.”

© Orbus Software 2013

that a normal success or cancel is not possible.
When a hazard occurs, any of the tasks in
the transaction end up not being executed or
compensated.

The behavior of the successful completion at
the end of a transaction is different than that
of a normal sub-process. When each path
of the transaction reaches the end event, the
flow does not immediately move back up to
the higher-level parent process, as does a
normal sub-process. First, the transaction
protocol needs to verify that all the participants
have successfully completed their end of
the transaction. In other cases, a cancel or
exception flow will be triggered. Figure 5
represents a partial BPMN bookings diagram,
where the ‘bookings’ sub-process is modeled
as a transaction.

The diagram shows that a buyer is charged
only if all bookings (represented implicitly in

a collapsed transaction) are successful. In
case the transaction fails, the unavailability message will be sent, where
in the case of an exception, the issue will be handled
through customer service.

Sub Process Transaction

Figure 4: Sub-process’s flows (left) and transaction’s flows (right)

Bookings Sucesfull
bookings

Charge buyer

Send

unavailability

notice
Failed

bookings

Handle through

customer

service

Excep�ons
(harzards)

Figure 5: Booking example modeled as “collapsed” transaction

© Orbus Software 2013

Internal View
From the internal view, a transaction differs from a normal sub-process,
because it has to include additional transaction-specific elements
(Table 1).

BPMN 2.0 element Graphical representation BPMN 2.0 specification based explanation

Transactional

sub-process

A transaction is a sub-process that is supported by a special protocol that

ensures that all parties involved have complete agreement that the activity

should be completed or cancelled. The attributes of the activity will

determine if the activity is a transaction.

Compensation activity The compensation activity, which can be either a task or a sub-process,

has a marker to show that it is used for compensation only and is outside

the normal flow of the process.

Intermediate non-

interrupting boundary

cancel event

This type of event is triggered if a cancel end event is reached within

the transaction sub-process. It can also be triggered if a transaction

protocol “cancel” message has been received while the transaction is

being performed. A cancel event always interrupts the activity to which

it is attached.

End cancel event This type of end event is used within a transaction. It will indicate that the

transaction should be cancelled and will trigger a cancel intermediate event

attached to the sub-process boundary. In addition, it will indicate that a

transaction protocol cancel message should be sent to any entities involved

in the transaction.

Non interrupting

sub-process com-

pensation start event

This type of start event is only allowed for triggering an in-line compensation

event sub-process when a compensation occurs. It does not interrupt

the process since the process has to be completed before this event can

be triggered.

Intermediate non-in-

terrupting boundary

compensation event

The Event will be triggered by a thrown compensation targeting that Activity.

When the Event is triggered, the Compensation Activity that is associated

to the Event will be performed. Compensations can only be triggered after

completion of the Activity to which they are attached. Thus they cannot

interrupt the Activity.

Intermediate throwing

compensation event

In normal flow, this intermediate event indicates that compensation is

necessary. If an activity is identified, and it was successfully completed,

then that activity will be compensated. The activity must be ‘visible’ from

the compensation intermediate event.

End compensation

event

This type of end indicates that compensation is necessary. If an activity

is identified, and it was successfully completed, then that activity will

be compensated. The activity must be ‘visible’ from the compensation

end event.

TransactionTransaction

Transaction

Transaction
Transaction

Transaction

Transaction

Transaction

Table 1: BPMN 2.0 transaction specific elements

© Orbus Software 2013

The following diagram (Figure 6) represents a
common modeling approach of a transaction.
It represents the internal view of the booking
example (Figure 5).

While a transaction is a sub-process it consists
of several activities (e.g. book hotel and book
flight). Beside these activities, which represent
a normal flow, a transaction includes special
‘compensation activities’ (‘cancel flight’ and
‘send hotel cancelation’). These activities
are not part of a normal flow and represent
transaction’s compensation. A compensation
activity is connected to a corresponding
normal-flow activity with a compensation
association (dotted arrows). A compensation
association occurs outside the normal flow

of the process and is based upon a compensation intermediate
event that is triggered through the failure of a transaction or a throw
compensation event.

The term ‘compensation’ is concerned with undoing steps that were
already successfully completed, because their results and possibly side
effects are no longer desired and need to be reversed. If an activity is still
active, it cannot be compensated, but rather needs to be cancelled.

Cancellation in turn can result in compensation of already successfully
completed portions of an active activity, in case of a sub-process.
Compensation is performed by a compensation handler.

A compensation handler is a set of activities that are not connected to
other portions of the BPMN model. The compensation handler starts
with a catch compensation event. That catch compensation event
is either a boundary event, or, in case of a compensation event sub-
process, the handler’s start event. A compensation handler performs the
steps necessary to reverse the effects of an activity. In case of a sub-
process, the compensation handler has access to sub-process data at
the time of its completion (“snapshot data”). Compensation is triggered
by a throw compensation event, which typically will be raised by an error
handler, as part of cancellation, or recursively by another compensation
handler. That event specifies the activity for which compensation is to be
performed, either explicitly or implicitly.

The next example diagram builds on the previous one. It includes a
mechanism that enables the customer to cancel the transaction after it
has been successfully completed. In this case, cancel event cannot be
used to undo the transaction, because cancel throw must come from the
interior of the transactional sub-process.

Bookings

Sucesfull
bookings

Charge buyer

Book flight

Book hotel

Cancel flight

Send hotel

cancelation

Send

unavailability

notice

Handle through

customer

service

Excep�ons
(harzards)

Failed
bookings

Figure 6: Booking example modeled as “expanded” transaction

© Orbus Software 2013

The diagram in Figure 7 resolves this by using a throwing compensating
event (‘undo bookings’), which can be positioned outside the
transaction. The throwing compensation event triggers all of the
compensating activities within the transactional sub-process.

Conclusion
Business process transactions are important since it is common
that process’s activities are interrelated in a way, which requires
comprehensive and consistent execution. BPMN provides built-in
support for modeling business transactions, which are represented as a
sub-process with double line borders. The main difference between a
sub-process and a transaction is that the relationships among tasks in a
transaction are very strong and constraints regarding their execution are
placed on the tasks while a sub-process is merely a set of related tasks.

Despite of the importance of business transactions, modelers commonly
avoid using them, since they require advance modeling skills – special
transactional elements as well patterns of their use. In this case, a
simplified, two stage approach, can be used. In the first stage, a modeler
can represent a transaction as a “black-box”, since this representation
requires only a fraction of required skills. When collapsed transactions
are mastered, he or she can start focusing on the internal view of a
transaction, which requires the knowledge of the remaining set of
transactional elements as well as patterns of their use.

Bookings

Book flight

Book hotel

Cancel flight

Request

customer

approval

Send hotel

cancelation

Excep�ons
(harzards)

Failed
bookings

Unavailable

Unavailable

Cancel

Cancel

Approval

Disapproval

24 hours

Charge credit card

Send

confirmation

Error

Undo

Bookings

Send failure

notice

Handle

through the

customers

service

Figure 7: Throwing compensation event

© Copyright 2013 Orbus Software. All rights reserved.

No part of this publication may be reproduced, resold, stored in a retrieval system, or distributed in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the copyright owner.

Such requests for permission or any other comments relating to the material contained in this document may be submitted
to: marketing@orbussoftware.com

References
[1] Business process library, available at:

http://en.q-bpm.org/mediawiki/index.php/Transaction_(BPMN)

[2] BPMN 2.0 specification, available at:
http://www.omg.org/spec/BPMN/2.0/

[3] B. Silver, BPMN method and style. Aptos
Calif.: Cody-Cassidy Press, 2009.

Orbus Software
3rd Floor
111 Buckingham Palace Road
London
SW1W 0SR
United Kingdom

+44 (0) 870 991 1851
enquiries@orbussoftware.com
www.orbussoftware.com

