
White Paper
The Agile Enterprise Architect
Working Effectively with Sprint Teams, Backlogs and Scrum Masters

In today’s growing digital economy, organizations are continually
challenged to deliver robust solutions under shorter and shorter
timeframes. Large organizations, particularly those in heavily
regulated industries, often face an even higher burden of
ensuring additional risk management and that mitigation controls
are in place, which can add additional layers that slow progress
down. In order to accelerate productivity, many development
communities have turned to Agile Software Delivery methods as
a means of increasing their delivery velocity, or to at least keep
pace as additional compliance layers are added on.

Implementing Agile in larger, more complex organizations, however, can
pose significant problems and execution impediments when trying to
scale Agile techniques at the Enterprise level. Challenges erupt between
cross-functional service delivery models, traditional project management
techniques, conflicting risk management models and efforts to ensure
an overarching adherence to Enterprise Architecture policies, guidelines
and roadmaps. It can and has been done before, but implementing a
successful Agile practice at the Enterprise level that is in harmony with
the rest of the institution seldom occurs ‘organically’ and typically must
be done with very deliberate intent.

Enter the Enterprise Architect, who must keep the organization on a
critical strategic path and show steady progress against Reference
Architecture roadmaps without being perceived as slowing progress
down. Agile teams need to be able to move very quickly through their
tasks, and terms like ‘oversight’ and ‘governance’ often bring a cloud of

Guy B. Sereff

WP0106 | October 2013

Guy Sereff is an author, speaker and

technology practitioner. His Technology

Industry experience includes Application

Research and Development, Large-Scale

Technology Management, and Global

Enterprise Architecture.

As well as a pragmatic blend of Strategy

and Tactical execution, Guy also has

extensive Architectural Domain experience

which covers Business Architecture,

Information Architecture, Solution

Architecture and Enterprise Architecture.

Access our free, extensive library at
www.orbussoftware.com/community

© Orbus Software 20132

resistance with them. Enterprise Architects must find the right balance
within their corporate cultural environment to become effective Agile
Enterprise Architects.

In this paper, we’ll first briefly discuss basic Agile concepts to establish
a baseline for our dialog. Next we’ll look at common challenges facing
organizations that attempt to implement Agile at the Enterprise-wide
level to set our scoping context. Finally, we’ll discuss the following
five principles that potential (and existing) Agile Enterprise Architects
should consider in order to increase their effectiveness and likelihood of
success:

1. Study Up on the Use/Misuse of Agile - Understand the
 organization’s Agile Methodology definition, implementation
 and level of maturity

2. Tackle the Hard Stuff - Address the challenges of Enterprise
 Agile head-on within the context and culture of the organization

3. Plan and Prepare Ahead - Be prepared for rapid deployment
 ahead of time with reusable EA artifacts and components

4. Work on the Front Lines - Spend time with/as a Solution
 Architect through an entire Sprint or Delivery Cycle to keep a
 realistic point of view

5. Reduce Friction - Provide a means for Low-Friction Reference
 Architecture Adoption

Agile Concepts
The Art and Science of Agile
Over the past ten to fifteen years, the use of some form of Agile and its
subtle variations has been of keen interest across the industry. Delving
into all of the aspects and pros and cons of Agile as a discipline is far
beyond the scope of this document, as there are numerous resources
available on the subject. Our purpose for discussing Agile here in the
context of this white paper is to understand the root thinking behind
Agile at its origin, establish a baseline set of core concepts, which then
sets the stage for a more focused discussion regarding the challenge
of Agile at the enterprise level, as well as its impact on an organization’s
Enterprise Architecture practice.

Much of what we know of today as Agile, in terms of a software delivery
methodology, was loosely formalized into a set of value statements
in 2001, when a group of seventeen leading software engineering
methodology practitioners from different disciplines and viewpoints
came together and actually agreed upon what they termed the Agile
Manifesto. This manifesto is a declaration of four simple, yet powerful

© Orbus Software 20133

unifying values. The purpose of the manifesto
was and continues to be collectively designed
to significantly improve the software delivery
process and to ease the persistent cycle of
tension between the community of software
consumers and the community of software
producers.

Be sure to read the declaration carefully. The
authors were not necessarily promoting the
abandonment of structured delivery methods or
suggesting the elimination of traditional project
management in favor of chaos or anarchy per
se; instead they were placing an emphasis on
valuable activities that had the potential of much
better outcomes than traditional methods had
produced previously.

Elaborating further on the Agile Manifesto, the Agile Alliance organization
went on to supplement the initial value statements by releasing the
Twelve Principles of Agile Softwareii. As you read through these
principles, you’d correctly find them to be quite intuitive and rather
insightful. Ironically, you may also find them to be quite provocative
and potentially contradictory to traditional views on risk management
and somewhat counter-intuitive to predictive engineering methods,
depending on the context and culture of the engineering discipline
present within your organization today.

Agile Software Delivery implements a rapid iterative approach within a
set timeframe with the objective of creating a functioning product at the
end of each cycle. There are a few ‘styles’ or methods of implementing

The Agile Manifestoi

The Manifesto for Agile Software Development

We are uncovering better ways of developing software by

doing it and helping others do it. Through this work we have

come to value:

• Individuals and Interactions over processes and tools

• Working Software over comprehensive documentation

• Customer Collaboration over contract negotiation

• Responding to Change over following a plan

That is, while there is value in the items on the right, we value the

items on the left more.

1. Our highest priority is to satisfy

the customer through early and

continuous delivery of valuable

software.

2. Welcome changing requirements,

even late in development. Agile

processes harness change for the

customer’s competitive advantage.

3. Deliver working software frequently,

from a couple of weeks to a couple

of months, with a preference to the

shorter timescale.

4. Business people and developers

must work together daily throughout

the project.

5. Build projects around motivated

individuals. Give them the

environment and support they need,

and trust them to get the job done.

6. The most efficient and effective

method of conveying information to

and within a development team is

face-to-face conversation.

7. Working software is the primary

measure of progress.

8. Agile processes promote sustainable

development. The sponsors,

developers, and users should be

able to maintain a constant pace

indefinitely.

9. Continuous attention to technical

excellence and good design

enhances agility.

10. Simplicity--the art of maximizing

the amount of work not done -

is essential.

11. The best architectures, requirements,

and designs emerge from self-

organizing teams.

12. At regular intervals, the team reflects

on how to become more effective,

then tunes and adjusts its behavior

accordingly.

The Agile Alliance’s Twelve Principles of Agile Software

© Orbus Software 20134

Agile, but at their core they represent an adaptive iterative approach that
produces incremental working deliverables within a fixed period of time.

Requirements are typically captured as User Stories (textual description
of a desired noun (actor)/verb (action) capability) or Use Cases (textual
description plus primary and alternative path delineation with human
actor/system actor integration information), depending upon the level
of information granularity desired. The inventory of the requirements is
typically placed into a backlog, with each discrete unit of work assessed
a level of difficulty, assigned a delivery priority and potentially given a
high-level realization effort estimate.

The time allotted for ‘final’ product delivery is broken into fixed-length
cycles, or sprints. Each sprint is typically a self-contained loop or mini-
project, where analysis, design, development test and deployment
activities occur with minimal delay. Sprints are often sized in days or
weeks in order to keep an aggressive delivery cadence going – sprints
lasting months or quarters tend to morph into pseudo-waterfall efforts,
looking less and less like true agile development as the initiative
progresses.

Sprint mobilization typically involves assessing the current requirements
backlog and identifying what work will be produced within the current
cycle. Traditional project managers are often tempted to map out all
of the User Stories or Use Cases by sprint through the end of the
program engagement. While this can be a helpful starting point for the
first iteration, this plan usually gets very ‘muddy’ and rapidly out of date
after several sprints have been completed, due to the adaptive nature
of Agile delivery. Flexibility around requirements clarification and their
interpretation means that effort sizing estimates can (and will) vacillate
wildly from their initial assessment, and there will invariably be work tasks
that spill over from one sprint back into the backlog, which may or may
not be addressed sequentially (i.e. unfinished work is not guaranteed to
automatically continue during the next sprint).

More and more system capabilities are delivered with each iterative
sprint, theoretically reducing the backlog over time. The ‘burn down
rate’, or pace at which items from the backlog are being completed over
time, helps assess the overall velocity of the team and level of functional
completion by the targeted end date. Once the amount of completed
work is sufficient from both a quantitative (level of functionality) and
qualitative (robustness of the working system), the product is declared
ready for release. Rigor around release candidate readiness assessment
is based on the planned scope of deployment (i.e. Proof of Concept,
Friendly User Test, Pilot, General Availability, etc.), with the intent to
get the product out the door as quickly as possible. Backlog items not
completed or only partially completed at the time of product release are
either jettisoned or queued for consideration in a future release.

© Orbus Software 20135

Figure 1 depicts a generalized view of the Agile process as was
previously described. The formal starting point for the Timebox depends
on the organization’s current level readiness to engage (i.e. does the
backlog already exist or not) and the length of time mobilization will
require. Cross-functional communication is critical to the success of
Agile, as teams need to provide and receive fast and reliable feedback
during and between task iterations.

Technicians and end-user representatives iterate back and forth between
requirement definitions and test results. Designers and developers
iterate back and forth between approach and implementation details.
Numerous sprints are conducted within the overall project Timebox,
producing some form of a ‘working’ system at the end of each sprint
cycle. Simultaneous sprint teams can be leveraged, although they often
require additional levels of cross-functional platform integration and
validation work.

By and large, Agile can be very effective in the right operating
environment when supported by appropriately skilled resources from
all requisite disciplines (Project Management, Business Analysis,
Architecture, Engineering, Certification, etc.). For those familiar with
Agile already, these generalized concepts will likely resonate with
current knowledge and practices at some level. There are several

Figure 1 - Generalized Agile Delivery Life Cycle

© Orbus Software 20136

industrial-strength Agile methodologies available and in practice today;
our purpose here was only to point out a few common threads and
concepts. For those who may be less familiar with Agile, you’ll find
additional background materials listed in the reference section that can
potentially help you obtain a deeper level of understanding.

Challenges to the Agile Enterprise
From my perspective, the term Agile evokes an image of a light, nimble
being or organism that is capable of quickly scurrying from one place
to another, deftly accomplishing tasks and moving on to the next.
The term Enterprise tends to evoke an image of a very large entity of
great potential strength and scale, but not typically known for being
particularly fast or adaptive to change. Linking the terms together, either
as Enterprise Agile or Agile Enterprise, seems paradoxical at best.
Large, global organizations are typically complex and struggle with rapid
transformation. Large-scale risks grow into complicated policy safety
nets designed to protect the stakeholders and comply with external
regulators. Yet some firms are finding their way to harness the power and
promise of Agile approaches and reaping the benefits.

For our purposes, we’ll define an Agile Enterprise as an organization
that has been able to successfully implement Agile methods in scale,
specifically in terms of software development and solution delivery. In
this context, ‘in scale’ means that a significant portion of software
delivery follows a defined Agile methodology to deliver critical or strategic
solutions. Repeatable patterns of success are evident and spread
across more than one part of the organization.

Large organizations that are perhaps dabbling with Agile on a small
pilot basis to deliver a non-critical application may be on the road
to becoming an Agile Enterprise. However, many organizations are
unable to successfully get Agile out of the lab environment and into the
mainstream of their technology discipline. It’s not that it can’t be done;
it’s just that it isn’t always intuitive and certainly not easy to do.

In The Enterprise and Scrum, Ken Schwaber discusses the concept of
‘Muscle Memory Friction’, in which the organization’s progression to
Agile, or Scrum in particular, is potentially hindered by four organizational
memories:iii

© Orbus Software 20137

• Waterfall Thinking
Classic cascading project management techniques that are deeply
embedding in the organization’s psyche and contrary to iterative
delivery approach methods

• Command and Control
Managers believe they know best about everything and make
dictation from ‘on high’ regardless of input from the community of
individual contributors

• Commitment to Defying the Laws of Nature
Engineers and solution providers yield to the pressure to make
promises that they will deliver humanly impossible results...again

• Hiding Reality
Continually communicating an untrue or overly optimistic status in
hopes that someone figure something out before the truth gets out
and the problems will magically go away

The potential threat of these points of hardened organizational thinking
should not to be taken lightly. Organizations that lack a culture of
transparency or don’t tolerate the delivery of bad news well will be
disappointed with their ability to adopt Agile in scale. Hiring a certified
Scrum Master doesn’t make the organization Agile; becoming an Agile
Enterprise requires a commitment from top to bottom. Senior technology
and business leadership must be willing to support real process change
and invest in adoption. Developers and team members must be ready,
willing and able to do ‘Agile’ and not have it forced on them. Too many
‘voices of doom’ or ‘devil’s advocates’ around the table will lead to a
self-fulfilling prophecy of failure, or at best lackluster results.

The following table, adapted from Ambler and Lines’s book on
Disciplined Agile Development, highlights common Agile scaling or gating
factors that should be considered and addressed.iv

Geographic Distribution Colocation is optimal; Where will the team be physically located?

Team Size Optimal teams size is typically small (7-10 members); How big will the teams be and how many of them

will there be?

Regulatory Compliance Agile teams tend to resist Governance; What governing aspects are non-negotiable?

Domain Complexity Agile complexity grows with the complexity of the domain; How complex are the problems to be solved

with Agile?

Technical Complexity Agile can be applied to new or legacy platforms of varying technical levels of difficulty; How complex

are the technical environments that will be involved in an Agile effort?

Organizational Distribution Cross-functional project teams can be challenging to manage even without Agile; What is the

organizational topology view of the required Agile participants and stakeholders?

Organizational Complexity Collaboration is critical to Agile; What is the current collaboration culture in the organization and how

hard is it to change?

Enterprise Discipline Agile takes time to do well and should not move the organization away from its strategic vision;

How will fundamental enterprise principles regarding architecture, reuse and strategic alignment

be incorporated?

Enterprise-Level Agile Scaling Factors to Consider

© Orbus Software 20138

All of these gating factors can and should be addressed at some
level ahead of time. The problem is that many organizations don’t
fully address them until the symptoms manifest themselves, often
masking their root cause. Rather than taking a planful approach
designed to establish a robust and scalable Agile practice from the
onset, organizations plunge headlong into implementation. These
same organizations are often later disappointed with their Agile results,
incorrectly assuming that Agile simply is not a good approach after all.

One last observation we’ll discuss on the challenges of creating an
Agile Enterprise is the common disconnect from sound Enterprise
Architectural principles. Case in point, the Ivar Jacobson International
organization makes the following observation in the context of performing
Enterprise-Scale Agile Software Development:

Focus on Architecture
Ensuring that the solution delivered is maintainable, extensible,
and high-performing. Many agile approaches ignore architecture,
or assume it can be derived by merely refactoring. This results in
well-structured code but ignores the bigger picture. Focusing on
the architecture is also essential to co-ordinating multiple teams
working together.v

Delving deep into the challenges of scalable Agile software delivery at the
Enterprise level is a topic large enough to fill multiple white papers. Our
purpose for touching upon it here is to highlight some of the common
barriers to wide-spread adoption of Agile across larger organizations.
This will help the Agile Enterprise Architect recognize potential issues
that may be preventing their organization from enjoying the significant
benefits Agile has to offer.

Becoming an Effective Agile Enterprise
Architect
Now that we’ve briefly reviewed Agile software delivery methods
and potential obstacles to achieving effective Enterprise-scale Agile
proficiency, we turn our attention to the role of the Enterprise Architect.
Regardless of the particular Enterprise Architecture framework an
institution follows, architecture is generally broken into the following
common domains: Business Architecture, Information Architecture,
Solution Architecture, Application Architecture, and Platform (or
Technical) Architecture.vi

The Business Architecture domain within Enterprise Architecture often
aligns very nicely with the principles of Agile, focusing on the promise
of rapid deployment of strategic business capabilities. However, when
progressing through the other more technical Enterprise Architecture
domains, challenges can erupt as attempts to align Agile teams to

© Orbus Software 20139

architectural standards and reference architecture roadmaps is often
perceived as ‘heavy handed deceleration’ and an ‘innovation killer’. Yet
allowing an Agile program to deliver solutions that are in conflict with, or
perhaps even diametrically opposed to the organization’s architectural
standards is not desirable in the end run, no matter how fast the solution
was delivered.

Enter the concept of the Agile Enterprise Architect – a proactive,
pragmatist who focuses on maintaining the spirit and benefits of Agile
while finding ways to apply sufficient architectural controls from a risk-
based model to ensure that the broader interests of the enterprise are
protected. We can further describe this concept in terms of a role
definition such as the one below:

An Agile Enterprise Architect is an actively engaged Enterprise
Architect who effectively guides and influences organizations
through the Agile Software Delivery process, providing the
appropriate level of design oversight and reference architecture
governance without impeding the velocity of solution delivery or
the level of delivered functionality.
Sereff, 2013

Becoming an effective Agile Enterprise Architect requires planning and
preparation in the anticipation of needs within the organization. Jumping
into the middle of an active Agile engagement armed with only a legacy
delivery solution mindset and limited tools will only foster disharmony and
create tension. The following suggestions provide some practical steps
to serve as a starting point to begin exerting more architectural influence
into the Agile Software Delivery process.

First and foremost, the Agile Enterprise
Architect needs to have a full understanding
of how the organization is executing what it
considers to be Agile Software Delivery. Some
organizations may follow all of the suggesting
steps of a particular Agile methodology with

academic precision. Other organizations may follow an adaptive
hybrid Agile method that works best for the organization. Still other
organizations may follow an obscure set of practices that are Agile in
name only and look more like mini-waterfall iteration prototyping. While
improving an organization’s Agile implementation approach may be a
future objective, the immediate requirement is to obtain and demonstrate
a solid, functional knowledge of the current practice.

The reason for this level of knowledge is to allow the Agile Enterprise
Architect to effectively engage in Agile sprint activities without disrupting
the flow of progress. Collaborative teams do not always quickly welcome
an ‘outsider’, particularly if they perceive that person has not done their
homework or ‘doesn’t get it’. Building credibility is critical if one is to

1 - Study Up on the Use/Misuse of Agile

Understand the organization’s existing Agile Methodology

definition, implementation and maturity level

© Orbus Software 201310

influence behavior. The axiom of ‘seeking first to understand, then to
be understood’ holds true in this instance.vii One way to gain hands on
learning is to participate in an Agile cycle from start to finish, observing
the process, roles and collaboration dynamics. Advice can be offered
if solicited, but the real objective is to learn how the process flows and
what the interaction model of the participants is today. This way one will
be better prepared to be an active participant in the cycle.

The effective Agile Enterprise Architect must be
bold enough to tackle the more difficult issues
head on. This doesn’t imply an abrasive or
dictatorial style, but rather a keen awareness
of where the most significant architectural
problems are and then focusing the team’s

energy on addressing those issues first. There is often a preference
for taking the path of least resistance to keep up with the committed
backlog burn down rate. However, architectural ‘short-cuts’ or plans
for delayed resolutions are often very difficult to correct in any type of
project. Since the goal of each Agile iteration is to produce a working
production-ready candidate solution, the impact of regressive design can
be even more difficult.

When identifying critical architectural issues, convey the downstream
impact to the team to help them understand the level of difficulty in
realignment in future iterations. Consider how the team can address the
architectural issues while still being able to maintain the cadence required
by the program drivers and stakeholders. Be prepared with workable
alternatives that respect both the architectural requirements and the
needs and pressures facing the delivery team.

Many Enterprise Architecture organizations
produce a number of models reflecting various
aspects of their organization. These models
often reflect repeating business patterns or
deployment solutions representative of the
organization’s current state. Yet many times,

these images are not in a central repository or lack an adherence to a
common set of standards or guidelines, making them difficult to quickly
locate or reuse. Digging through old project artifact folders to locate an
exported bitmap or JPEG file might help a little, but it lacks the attributes
required for rapid reuse, extension or refactoring in the type of tight
timeframes typically required by an Agile team.

Something as simple as having a series of UML 2.0 Sequence Diagram
templates prepopulated with common lifelines in an engineering-grade
modeling tool can speed the creation of contextual models, helping to
accelerate design activities while conveying critical message sequences
between platforms. Establishing an over-arching architectural approach
at program initiation can quell in-flight debates during the delivery

2 - Tackle the Hard Stuff

Address the challenges of Enterprise Agile head-on within the

context and culture of the organization

3 - Plan and Prepare Ahead

Be prepared for rapid deployment ahead of time with reusable

artifacts and components

© Orbus Software 201311

process and focus efforts in the right direction as opposed to launching a
realignment initiative at a later post-deployment date.

On the more complex end of the spectrum, having a collection of
scalable Service Oriented Architecture (SOA) services available to expose
core platforms from the organization’s Reference Architecture technical
specifications can quickly increase roadmap progression and accelerate
solution delivery even further. The key is that this can’t be done in
parallel with the Agile activities themselves – that is not the time to
introduce high-risk, critical path dependencies. Having proven, working
modular solutions already available ahead of the Agile program demand
curve not only provides an opportunity for rapid architectural alignment, it
may even provide an overall solution delivery accelerant.

The successful Agile Enterprise Architect
understands the value of hands-on
engagement with the Agile delivery teams. I
refer to this direct engagement approach
as ‘Architecture By Wandering Around’, an
adaptation of Tom Peters’ recognition of the

value of getting out from behind the desk and getting directly involved
with the layers of the organization where production occurs.viii The key
here is engaging in active collaboration and problem solving down in the
proverbial trenches where critical decisions are made in real time, rather
than simply watching things unfold from afar, resting comfortably whilst
rendering architectural proclamations from the metaphorical EA Ivory
Tower.

In this context, this is much more than monitoring daily scrum calls
while multi-tasking and listening for occasional architectural questions.
It is also more than being on ‘stand by’, waiting to engage only from
a reactive ‘as needed’ basis. This is about full-on engagement as an
Agile team participant – being recognized as a valuable contributing
resource, working through simple and complex design issues, providing
architectural insight and expert guidance, and above all being held
equally accountable to both the Agile and Enterprise Architecture
stakeholders.

Does this sound difficult? That’s because it is. Does it seem like this has
the potential to cause a lot of conflict? No doubt. But in the absence
of direct engagement, the question arises as to how architectural
standards are making their way into solutions at the cadence of Agile.
This approach may be an uncomfortable stretch for some Enterprise
Architects, and it may be the status quo for others, depending on
the culture of the current environment and cross-functional working
dynamics in place. However, this level of engagement allows the Agile
Enterprise Architect to be a catalyst for change, building credibility and
socializing the criticality and value of architectural alignment at the grass-
roots level.

4 - Work on the Front Lines

Spend time with/as a Solution Architect through an entire Sprint

or Delivery Cycle to keep a realistic point of view.

© Orbus Software 201312

The final recommendation for becoming an
Agile Enterprise Architect is to aggressively
work to reduce friction within the organization
when it comes to its ability to adopt and deploy
Reference Architecture components and design
patterns. Many firms suffer from the situation

where trying to follow the prevailing Reference Architecture definition
takes dramatically longer than spinning up or perpetuating a non-
compliant legacy environment. Discussions around the ‘greater good
of the Enterprise’ are important, but having bottlenecks or chokepoints
that discourage Reference Architecture adoption will generally not get
the required buy in across the rest of the company, particularly within the
Agile community.

If the organization felt strongly enough to establish a Reference
Architecture position and corresponding roadmap, then hopefully it
is also willing to invest in a process that supports rapid provisioning
and deployment of said Reference Architecture in scale. Having
gone through the Agile delivery process first hand as recommended
above, the Agile Enterprise Architect is now equipped with an accurate
understanding of where the process of adoption works well, and where
it breaks down. Ready-to-Consume architectural components must
also be Easy-To-Consume as well. If not, these strategic architectural
components may be quickly passed over by an Agile team who must
stay on track with the demands of their sprint cycle.

One way to assess where the ‘hot spots’ are when it comes to
consuming strategic architectural components and aligning solutions
to the prescribed architectural standards within the organization is
to engage the Business Architecture and/or the Business Analyst
community. Assign this group of process strategy experts a charter to
build a detailed Business Process Model that accurately reflects all of
the steps required when it comes to fully implementing a given set of
Reference Architecture definitions. This model should include all steps,
hand-offs and wait states from the component consumer perspective
(i.e. an Agile engineer).

The main reason for doing this is based on the notion that software
engineering is a business process in and of itself, regardless of whether
or not an Agile methodology is being followed. As such, the same
set of process evaluation and optimization tools and techniques used
to help streamline business operations, such as Lean Six Sigma, can
also be used here to optimize the integration of Reference Architecture
components. Once complied and assessed, this information on low-
friction process optimization can be used to demonstrate the dramatic
leverage that can be achieved across all of the solution delivery channels
within the organization.

5. Reduce Friction

Provide a means for Low-Friction Reference Architecture

Adoption.

© Orbus Software 201313

Conclusion
Becoming an Agile Enterprise Architect is not easy work, and the
principles shared within this document are by no means exhaustive.
Some of the effort requires process changes that may or may not be
hard to adopt, depending on the size of the organization and its ability
to change. The core message is to take a realistic view of what is
happening within the organization, engage in an impactful way, and be
prepared to remove roadblocks.

For those that accept the challenge of becoming an effective Agile
Enterprise Architect, potential benefits they’ll be driving into their
organization include:

• Better alignment of stakeholder needs across the organization;
• Stronger ability to provide architectural influence to Agile delivery

teams in real-time rather than at post-activity reviews and
checkpoints;

• Establishment of best-practices that benefit the Agile community
as well as other parts of the Enterprise;

• Acceleration of Reference Architecture adoption;
• Strengthened Enterprise Architecture credibility and accountability.

Recommended Reading

The Agile Enterprise: Reinventing your Organization for Success in an
On-Demand World
Pai and Pantaleo (2005)

Collaborative Enterprise Architecture: Enriching EA with Lean, Agile, and
Enterprise 2.0 practices
Bente, Bombosch and Langade (2012)

Building the Agile Enterprise: With SOA, BPM and MBM
Cummins (2008)

Lean Architecture: for Agile Software Development
Coplien and Bjørnvig (2011)

Scaling Software Agility: Best Practices for Large Enterprises
Leffingwell (2007)

© Copyright 2013 Orbus Software. All rights reserved.

No part of this publication may be reproduced, resold, stored in a retrieval system, or distributed in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the copyright owner.

Such requests for permission or any other comments relating to the material contained in this document may be submitted
to: marketing@orbussoftware.com

i Beck, Cockburn, Fowler et al. (2001). The Agile Manifesto.

 http://www.agilealliance.org/the-alliance/the-agile-manifesto/.

 Accessed September 14, 2013.

ii Agile Alliance. (2013). The Twelve Principles of Agile.

 http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-

 of-agile-software/. Accessed September 14, 2013

iii Ken Schwaber (2007). The Enterprise and Scrum.

 Redmond, WA, USA: Microsoft Press

iv Amblin, Scott and Mark Lines (2012) Disciplined Agile Delivery:

 A Practitioner’s Guide to Agile Software Delivery in the Enterprise. P. 22.

 Boston, MA, USA: IBM Press

v Ivar Jacobson International (2013). Enterprise-Scale Agile Software Development.

 http://www.ivarjacobson.com/enterprise_scale_agile_software_development/.

 Accessed September 18, 2013

vi Sereff, Guy. (2013). Building an Enterprise Business Architecture Practice within the

 Broader Enterprise Architecture Context. P.3.

 London, England, UK: Orbus Software

vii Covey, Stephen R. (1989). The Seven Habits of Highly Effective People.

 P. 239. New York, NY, USA: Simon and Schuster.

viii Peters, Tom. (2005). tompeters! - MBWA After All These Years.

 http://www.tompeters.com/dispatches/008106.php

 Accessed September 21, 2013.

Orbus Software
3rd Floor
111 Buckingham Palace Road
London
SW1W 0SR
United Kingdom

+44 (0) 870 991 1851
enquiries@orbussoftware.com
www.orbussoftware.com

