
White Paper
Understanding Service
Contract in a SO Ecosystem

Every one of us likes to be served, especially if we receive a good
service. All businesses are created by people who have brought
service into play as the fundamental element of any organization.
An enterprise is not an exception – inside the enterprise we also
service each other every day even though the servicing may be
masqueraded by processes and procedures. According to the
Value Network theory [1], people adhere to services in the work
place and in an interpersonal relationship regardless of any
processes and policies.

A consumer of a service is interested in only two things about the
service: if the service has certain capabilities, and if the results of these
capability executions suits the needs of the consumer. Every consumer
may become a service provider at the same time. This is why the old
saying “What goes around, comes around” has a literal meaning in
the ecosystem of services or Service-Oriented (SO) Ecosystem [2]. If
an enterprise not only works in a SO Ecosystem but also consciously
preserves SO Ecosystem inside itself, we have a Service-Oriented
Enterprise [3].

Michael Poulin

WP0111	 |	 October 2013

Michael Poulin is Head of Business and

Technology Architecture at BuTechCon,

a consulting firm based in the UK. He

has built up a wealth of experience

in business, enterprise and solutions

architecture in both the UK and United

States. His work focuses on bridging the

gap between business architecture and

modern technology.

Michael provides professional coaching

and knowledge exchange and is a

member of BCS and IASA.

Michael is actively engaged in the

Enterprise Architecture realm having

actively contributed in OASIS SOA

standards. Michael has also authored

various publications including ”Ladder

to SOE” and “Architects Know What

Managers Don’t”, written multiple articles

and blogs and presented at conferences.

Access our free, extensive library at
www.orbussoftware.com/community

© Orbus Software 20132

When a consumer interacts with a service, there
are usually different systems of rules that are
applied to an interaction. These rules are highly
cultural and contextual; they include physical,
informational and even legal aspects. In this
white paper, we will observe how by using the
OASIS standards we can formalize a procedure
of contracting services within and external
to an enterprise, from both a business and
technological perspective.

Why do we Interact with a Service?

The OASIS Reference Architecture Foundation for SOA specification
(SOA RAF) [2] states, “A SO ecosystem is a space in which people,
processes and machines act together to deliver business capabilities as
services in order to ‘further both their own objectives and the objectives
of the larger community” [2]. SOA RAF explains that an interaction
between a consumer and a service has deep and complex roots. Figure
2 shows how before interacting with a service and receiving its results
(Real World Effect or RWE), a consumer has:

	 1)	 to have a need for such a result
	 2)	 to have a willingness to obtain this result
	 3)	 to establish business trust with the service or service provider
	 4)	 to evaluate risks to its own reputation regarding this interaction
	 5)	 to evaluate the reputation of the service provider
	 6)	 to have a capability to engage with the chosen service when it
		 is needed.

 These needs and willingness are usually
enough for the consumer to look up a potential
service in the market. According to SOA RAF,
any service offered to potential consumers
should be represented by a corresponding
Service Description, while interactions should
be based on Service Contracts between the
service and its consumers.

Figure 1 - In the SO Ecosystem, participants are service
consumers and service providers simultaneously

Figure 2 - Preconditions of an Interaction with
a Business Service [2]

© Orbus Software 20133

How Do We Know Which Service is Good for Us?

Every service consumer has common and specific requirements for their
desired service. Consumers commonly ask whether the service performs
particular business functionality and provides for certain results (RWE).
Also, information about the provider (reputation) is important. In many
cases, business law and regulations dictate the consumer’s options in
choosing providers. All these are the parts of the Service Description.
The SOA RAF defines Service Description as it is shown in Figure 3.

A Service Description has to contain all information that a potential
consumer might require to make a decision on whether a particular
service is the one that can satisfy the consumer’s needs. The major
elements of Service Description are:

•	 Service Functionality
•	 Service Policies
•	 Description of Service’s Interfaces
•	 Service Reachability
•	 Operational Metrics

While many major elements are relatively well known in the industry, the
specifics of the distributed nature of SO Ecosystem, and especially its
part covering enterprise business, make Service Policies a very distinct
but mainly overlooked element; it represents so-called Business and
Technical Execution Context (EC). In contrast with usual programmatic
context related to the transaction or session and user’s identity, EC deals
with policies – rules, regulations and laws.

Figure 3. A Model of Service Description Defined in SOA RAF [2]

© Orbus Software 20134

For instance, such policies may include:

	 a)	 A rule that prohibits a service to work with clients deployed on 	
		 the SW platform lower than a particular version
	 b)	 A law that prohibits serving consumers from certain countries or
		 whose names are on the Sanctions Lists
	 c)	 A regulation that requires the use of a particular formula to 		
		 calculate for an exposure of credit risk.

We deliberately mentioned policies from different categories to
demonstrate that EC is much wider and more important than just a
programmatic communication context. As an example, a USA regulation
for mutual fund pricing is different from the corresponding UK regulation,
i.e. if a client in the US uses a UK service for this price calculation, they
may face problems with the American financial audit. Altogether, this
means that the Service Contract has to be very clear about agreed EC –
the same service can behave differently depending on the EC.

The industry is still uncertain on how to choose necessary service
features. Here is a receipt: a Service Description may be used in service
development as a source of requirements for design and implementation.
As the reader can see, Service Description is consumer-centric and
driven by an intent of satisfying the needs of a category of consumers;
it is much more than a service interface. Besides available service
interfaces, a potential consumer can find information about service
functionality, metrics for SLA and policies in the Service Description. The
latter represents the primary source for defining Service Contracts.

Service Contract in a SO Ecosystem

SOA RAF specifies: “When a consumer prepares to interact with a
service, the consumer and the service provider must come to an
agreement on the service features and characteristics that will be
provided by the service and made available to the consumer. This
agreement is known as a service contract.

Service Contract

An implicit or explicit documented agreement between the service
consumer and service provider about the use of the service based on:

•	 	 the commitment by a service provider to provide service
functionality and results consistent with identified real world
effects and

•	 	 the commitment by a service consumer to interact with the
service per specific means and per specified policies, where both
consumer and provider actions are in the manner described in the
service description” [1].

© Orbus Software 20135

A Service Contract is derived from the Service Description. With regard-
to technology, a Service Contract incorporates all information about
agreed programmatic interfaces of the service as well as all applicable
policies of service invocation. A Service Contract defines all obligations
– operational and executional – that the service accepts toward its
consumer, as well as all limitations which the consumer accepts toward
its rights and opportunities regarding the service. Figure 4 illustrates
the relationship of a Service Contract with other elements of the SO
Ecosystem.

The concept of a Service Contract in the SO ecosystem is the basis for
all service interactions, and the proper management of Service Contracts
is very important for any organization. If IT has intentions to become
a partner and enabler of business, it has to refine its terminology and
attribute a “service contract” to an agreement instead of to a connectivity
interface as it is still exclusively used in technology. The scope of the use
of technical “service contracts” is limited by development, while at the
level of the Solution or Enterprise Architecture it starts either misleading
or yielding the way up to the “relationship agreement”.

A particular programmatic interface of a service is not even a full contract
between the programmatic modules of the consumer and service
because these modules may have more than one connectivity interface.
Moreover, policies do not have formally defined places in the service
interfaces, while a notion of the execution context (expressed via policies)
is extremely important for services and consumers. In other words,
service execution context considers local policies of both consumer and

Figure 4. The Positioning of the Service Contract in the SO Ecosystem [2]

© Orbus Software 20136

service, thus making the service outcome dependent on the context.
If policies are omitted in the Service Contract, the consumer may be
heading towards serious problems when using the service.

A Service Contract does not necessarily need to contain all information
in its text; some information, like policy definitions and WSDL, may
be referenced. One service may have several contracts with the same
consumer, just as a consumer may have Service Contracts with several
services.

Consequently a Service Contract includes, as a minimum, a description
of all agreed service interfaces, related SLAs, service communication
and operation policies and policies of the execution context. Service
interfaces listed in the Service Contract are the only ones that a particular
consumer may use for a given service, despite other interfaces that
might be publicly available. A violation of the Service Contract can lead to
a potential breakdown of the relationship between consumer and service
up to a legal level.

How a Service Contract may be Used

SOA RAF identifies two types of Service Contracts:
	 1.	 Explicit Service Contracts that require certain negotiations 		
		 between the consumer and the service before the agreement is 	
		 reached and the service may be used
	 2.	 Implicit Service Contracts that are based on the consumer’s
		 acceptance with no negotiations of the service conditions and
		 constraints.

Here is an example of a Service Contract: A Service Description
offers three public interfaces A, B and C, and the use of each of them
is associated with a certain fee. The service policy declares that if a
consumer signs an explicit contract, the fee may be discounted. A
consumer enters into negotiation with the service and they agree that
this consumer will only use interface C. This results in some savings for
the consumer while public interfaces A and B become irrelevant.

In another example, a service offers consumers the chance to choose
among several SLAs for the same interface. This means that the service
requires an explicit contract with everyone; there is not a default SLA
bound to this interface. All explicit contracts are considered confidential.
That is, an explicit Service Contract may not be referred to in another
explicit Service Contract, even between the same consumer and service.

© Orbus Software 20137

An implicit Service Contract is an agreement that assumes that a
consumer accepts a service’s constraints “as is”. Usually, implicit Service
Contracts appear in the form of public Service Descriptions though in
some cases, an implicit Service Contract may be published separately.
As such, implicit Service Contracts may be referred to in other implicit or
explicit Service Contracts.

An example of an implicit Service Contract in the form of Service
Description takes place when we shop in a store. When we book
something or purchase goods, we agree with the store’s rules such as
merchandise price, return policy, opening hours and alike. A Service
Contract defines obligations that the service and consumer take on
themselves in regards to each other. No Service Contract, no obligation,
and, therefore, no service.

If an enterprise consciously enters into the SO Ecosystem for its external
and internal market, Service Contracts must have preconditions for all
cases of service use [3]. Even if services are used in the same LOB or
Business Unit, every service provider should know its obligations and
every consumer should know where its rights for the service start and
end. In many cases, when the service is created in a LOB, the same
people develop both consumer and service implementation. At a glance
this makes the creation of a Service Contract seem excessive. However,
the life of service (if it is designed properly) can last for a long time
because of an uncontrolled consumer base that requires a long-time
service support period. This means that eventually the consumers and
the services can end up under different business ownership and even the
IT department/staff may be split accordingly, e.g. between the in-house
and Cloud teams. If the time for creating a strong Service Contract at
inception is missed, adding it later on becomes a difficult and expensive
task [4].

While in the case of explicit contracts it is well defined who the
consumers are and how to manage service versions and the service
life-cycle, therefore the cases of implicit contracts can be more difficult
to manage. This is why the best practice of service management
recommends a mandatory registration of the service consumers with
the service regardless of the type of Service Contract applied. In a shop,
a payment check realizes the function of registration. This registration
may be articulated as one of the policies for the service interaction, and
consequently every consumer who utilizes the implicit Service Contract
automatically agrees with said registration.

It is important to note that the Service Description may set mandatory
aspects of a service that must be reflected in the Service Contract, such
as security means and acceptable alternatives, financial regulations,
or information access by 3rd Parties. The USA Patriot Act 2001
affects all American services offered in other countries, e.g., in the
EU, where consumers usually prefer to avoid such services since they

© Orbus Software 20138

allow a foreign (American) government to gain access to the personal
information of EU citizens.

As an example of alternatives, the Service Description may identify a
few versions of a terminology that may be recognized, and the specifics
of the contract are satisfied when a consumer chooses one of the
alternatives. At the same time, it is also acceptable if a consumer
identifies a policy it requires to be preserved by the service, and the
provider may be prepared to accept this policy as a part of the Service
Contract.

Any form of explicit contract couples the service consumer and provider.
While explicit contracts may be necessary or desirable in some cases
such as supply chain management, a commerce often uses a mix of
implicit and explicit contracts, and a service provider might offer (via
Service Description) a conditional shift from implicit to explicit contract.
For example, a company offers an implicit contract on the use of its
APIs to any application with a limit on the amount of service invocations.
If the application has to use more invocations, it has to enter into the
explicit fee-based contract with the provider. Thus, the same service may
have several unique Service Contracts with special SLAs for different
consumers.

Service Contract, Interface and Relationship

A service, especially Business Service, may have as many interfaces as
needed, e.g. one interface for each of the types of the service’s customer
base. Service interfaces are driven by the services, not the other way
around. Service interfaces cannot exist without the service, i.e. without
the service ‘body’; otherwise, it is not a service interface. All available
service interfaces are enumerated in the Service Description. Service
Contracts may specify any sub-sets of the described service interfaces
for the particular consumer. For example, a Business Service may
expose a programmatic interface in a form of a Web Service. However,
if we deal with just a Web Service, we cannot conclude if it represents a
service or acts as a standardized integration between two applications,
none of which is a service. A Web Service does not make an application
a service.

Let’s assume we have a service provider who announces a public
Business Service with an explicit Service Contract only. There may be
many reasons for doing this (vs. an implicit contract). For instance,
a service provider wants to stay in control over its consumer base
and explicitly manage its relationships with each consumer regarding
replacement of service versions over time. One of the consequences of
an existence of a Service Contract is that the service is dealing only with
the consumers who agree with it, explicitly or implicitly.

© Orbus Software 20139

This leads to the so-called Knight Rules of Ownership in the SO
Ecosystem [5] that the services follow in their relationships:

•	 A Consumer of my Consumer is not my Consumer
•	 A Service of my Server is not my Service
•	 A Partner of my Partner is not my Partner
•	 A Supplier of my Supplier is not my Supplier.

Thus, Service Contracts define the boundaries in the service
relationships. The significance of such boundaries is high.

Let’s consider a popular security solution such as the propagation
of an end-user’s identity through the chained invocations of different
applications, or modules, or components to the final “working” element.
IT security and audit originally used this propagation as a means
of tracing the requester in order to verify its rights to access each
component on the way. Some even created tokens that contained
access rights of particular users regarding each component in the
environment. Apparently, this model works only if all those components
share the same security realm.

However, if each component has its independent ownership, the
existence of a single security realm is not guaranteed. SOA RAF says,
“In a SOA ecosystem there may not be any single person or organization
that is really ‘in control’ or ‘in charge’ of the whole” [2]. For example,
company A works with a Cloud service provider and serves its own
consumer, company B. All of them have their own security realms. The
Cloud service provider delivers a special software system and has a
contract with company A. This Cloud service provider knows nothing
about B. That is, if company A and the Cloud service provider resolve
security issues among them and the Cloud service serves company
A, the identities of company B’s users have no meaning to the Cloud
service (recall, “A Consumer of my Consumer, is not my Consumer”).
Even if company A propagates a B-user’s identity to the Cloud service,
the B-user will have no access rights in the Cloud service and the latter
will simply ignore this information.

SO Ecosystem assumes that each service is responsible for setting a
contractual trust with its consumers. This trust is enough for a service
to perform an action upon the request from the trusted consumer
regardless of whose behalf this request was issued. No Service Contract,
no service.

Thus, when we work within services, do we really need to propagate
the end-user identity? This is the example where contractual business
relationships between consumers and services require the changing of
existing technology practice [4] and Service Contracts play one of the
fundamental roles in this reformation.

© Orbus Software 201310

Conclusion

This white paper introduces and discusses the notion of a Service
Contract as it is defined in the OASIS SOA RAF specification. Following
this specification, we reviewed motivations that lead to the interactions
between the consumer and the service. We have also formalized an
introduction of the service to the potential consumer via a Service
Description. The latter is the source for deriving a Service Contract that
regulates relationships and physical connectivity between the service and
its consumer.

A Service Contract in its implicit and explicit forms is the glue that
connects otherwise isolated services. A service may have many Service
Contracts with regular consumers or with other services that appear as
consumers or suppliers. This white paper reflects on the service-specific
aspect of an independent ownership of services (the Knight Rules) and
points to the ways in which Service Contracts demarcate ownership
and inter-obligatory boundaries. Overall, Service Contracts represent
a mechanism of formalizing co-operation and collaboration between
services and consumers. This mechanism can heavily impact existing
accustomed technical methods that may become inefficient in the SO
Ecosystem, thus calling for new solutions.

© Copyright 2013 Orbus Software. All rights reserved.

No part of this publication may be reproduced, resold, stored in a retrieval system, or distributed in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the copyright owner.

Such requests for permission or any other comments relating to the material contained in this document may be submitted
to: marketing@orbussoftware.com

Resources

[1]	� Allee, V. 2011 “A Baker’s Dozen Principles of Value Networks”
[online] January. Available at: <http://internettime.posterous.com/a-
bakers-dozen-principles-of-value-networks-v>

[2]	� OASIS Reference Architecture Foundation for Service Oriented
Architecture Version 1.0 Committee Specification 01 December
2012 Available at: <http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/
soa-ra.html>

[3]	� Poulin, M. 2009 “Ladder to SOE” in How to Create Resourceful
and Efficient Solutions for Market Changes within Business and
Technology [ebook] Troubador Publishing Ltd. Available at:
<http://www.mpoulin.com/ladder-to-soe/>

[4]	� Poulin, M. 2013 “Architects Know What Managers Don’t” in
Business Architecture for Dynamic Market [ebook] BuTechCon Ltd.
- Troubador Publishing Ltd. Available at: <http://www.mpoulin.com/
architects-know-what-manager-dont/>

[5]	� Poulin, M. 2012 “Knight Rules of Ownership in Service-Oriented
Ecosystem” eBizQ [blog] Available at: <http://www.ebizq.net/blogs/
service_oriented/2012/06/knight_rules_of_ownership_in_service-
oriented_ecosystem.php>

Orbus Software
3rd Floor
111 Buckingham Palace Road
London
SW1W 0SR
United Kingdom

+44 (0) 870 991 1851
enquiries@orbussoftware.com
www.orbussoftware.com

