
White Paper
Enterprise Architecture
meets Soft Systems - Paper 1
A Brief History of Soft Systems and why it matters for Enterprise Architects

My previous set of White Papers on The Art of Judgment applied
the ideas of Sir Geoffrey Vickers to Enterprise Architecture [Ref
1]. In particular, they considered the way in which we construct
our reality and how the act of constructing that view changes
our perception of what it is. They also considered the key areas
where Judgment is exercised: in constructing the reality (what
is and is not the case), the values we apply to it (what ought or
ought not be) and what we decide to do about it. The natural link
between Vickers’ ideas, Systems Thinking [Ref 2] in general, and
Soft Systems in particular, is the way in which we deal with a key
challenge: how we construct our understanding of a problem and
the way in which that understanding changes with every attempt
to solve it – the core feature of a Wicked Problem [Ref 3].

Enterprise Architecture centers on the defining and resolution of Wicked
Problems – these problems are difficult (or impossible) to solve because
of incomplete, inconsistent and unstable requirements with complex
interdependencies that are often difficult to recognize. For an Enterprise
Architect, differentiating between difficult and impossible is a critical
act of judgment. However, traditionally the methods and tools available
to the Enterprise Architect are derived from Systems Engineering as
originally conceived at Bell Telephone Laboratories in the first half of the
20th Century. The use of a Soft Systems approach equips the Enterprise
Architect to effectively deal with a broader range of more complex
problems - enabling more impossible problems to be seen as ‘just’
difficult.

Ceri Williams

WP0126 | January 2014

Ceri has thirty years in the IT industry,

originally delivering complex control

systems and subsequently broadening

focus to Enterprise Architecture,

Governance and transformation of the

IT function. Working as a chief architect,

consultant and coach, he enables FTSE

250 organizations to make medium and

long term decisions on the shape of the

Enterprise Architecture and positioning of

the IT function.

He advocates putting people at the heart

of technology and business change

with focus on the human enablers and

constraints. His work deals with the

way in which rigorous engineering and

architecture disciplines are integrated with

the cognitive and behavioural capabilities

of the people who practice them.
Access our free, extensive library at
www.orbussoftware.com/community

© Orbus Software 20142

Traditional Systems Engineering approaches work well on deterministic
problems on a single system scale to deliver a new Information System.
While they are necessary, they are not sufficient to deal with the complex
challenges that Wicked Problems present – these are bread and butter
for Enterprise Architects.

This Series of White Papers
This series of white papers explores the value of integrating Systems
Engineering into the broader Soft Systems world in the context of
Enterprise Architecture. It proposes the practical behaviors and values
that Enterprise Architects can adopt in order to take their practice
beyond the engineering domain and enhance their effectiveness. This
first paper provides an overview of Soft Systems Method, its positioning
alongside Systems Engineering Methods, and their significance for
Enterprise Architects. Each of the subsequent seven papers covers a
key element of the Soft Systems Method and its application to Enterprise
Architecture:

[Paper 2]: The limits of an engineering approach to Enterprise
Architecture: what Engineering is and is not good at. Contrary
to popular belief, the Enterprise is not a complex engineering object.
Complex, yes. Engineering, no. This paper explores the limits of adopting
an Engineering-intensive approach to EA and how integrating it with Soft
Systems provide a comprehensive set of tools for the vast majority of
situations.

[Paper 3]: How the Enterprise Architect can recognize and
respond to the Softs Systems challenge. This paper considers how
the Enterprise Architect can recognize the situations when Soft Systems
methods are likely to be helpful and when an Engineering approach may
be more appropriate. It considers how Enterprise Architects can weave
the ideas of Soft Systems methods into their business-as-usual practice
without confusing their stakeholders.

[Paper 4]: Concepts, abstractions & simplification: modeling,
but not as we know it. Most frameworks and visual languages name
concepts such as ‘Conceptual Model’, ‘Logical Model’, or ‘Service
Model’ without defining them in a way that can be put consistently and
easily into practice by multiple Enterprise Architects over an extended
time. This paper encourages the Enterprise Architect to be flexible, but
clear about these definitions, and design the Meta-Model to be fit for
purpose. It helps answer questions such as “how do we know when
we’ve finished?” and “how can we describe this to be re-usable?”

[Paper 5]: Perspectives and viewpoints: choosing your window
on the world. IEEE 1471 is the DNA of viewpoints, affording the
Enterprise Architect with a systematic means to make the Architecture

© Orbus Software 20143

intelligible. A key principle of a related discipline, Neuro-Linguistic
Programming (NLP) is that “the meaning of the communication is the
response that you get (not the one intended)”. This paper considers
how Enterprise Architects are able to put themselves into the shoes
of the stakeholders, and adjust their language, concepts, content and
presentation to communicate effectively. It considers the strengths
and weaknesses of the key IEE 1471 concepts of ‘constructed’ and
‘projected’ views as a way of representing multiple inconsistent realities
in a way that can still be effective in a soft-systems context.

[Paper 6]: Mind the gap - the model vs. the real world. Polish-
American scientist and philosopher Alfred Korzybski remarked that “the
map is not the territory”, encapsulating his view that an abstraction
derived from something, or a reaction to it, is not the thing itself.
Korzybski held that many people do confuse maps with territories - that
is, confuse models of reality with reality itself. This pitfall is particularly
relevant for anyone practicing an approach that is based on an
Engineering discipline. This paper considers these pitfalls and offers
practical advice on how to avoid them by integrating with Soft Systems
methods.

[Paper 7]: The role of creativity, instinct, intuition and experience.
Most Methods and Frameworks are focused on structures, concepts
and procedures, but without the very personal capabilities of creativity,
instinct, intuition and experience, no method can deliver value. This
paper considers how Enterprise Architects can leverage their personal
capabilities and integrate them with more methodological constraints.
It discusses how creativity can be systematic, and the conditions that
recognize and exploit instinct and intuition.

[Paper 8]: Integrating Engineering, EA and Soft Systems Methods
- adapting and leading with a Soft Systems approach. Summarizing
the key elements of the previous papers, this paper proposes how
Enterprise Architects can blend the best features of Soft Systems and
Hard Systems to equip them for the real world that is only sometimes
predictable and rational.

© Orbus Software 20144

A (very) Short History of Soft Systems
The first lines of the Wikipedia entry covering Soft Systems [Ref 4]
reads: “Soft systems methodology (SSM) is a systemic approach for
tackling real-world problematic situations.” Soft Systems provide a
framework for users to deal with the kind of messy problem situations
that lack a formal problem definition. Enterprise Architecture deals with
“real-world problematic situations” and routinely encounters “messy
problem situations that lack a formal problem definition” – this is why a
re-imagining of Enterprise Architecture as a blend of Soft Systems and
Systems Engineering disciplines is now needed, and provides us with a
complete set of concepts and tools with which to operate in a complex,
people-centric environment.

The Soft Systems Methodology originally emerged in the 1960s in
response to problems encountered in tackling management and
organizational problems using a systems engineering approach. Again,
from the Wikipedia entry: “The team found that Systems Engineering,
which was a methodology so far only used for dealing with technical
problems, proved very difficult to apply in real world management
problem situations. This was especially so because the approach
assumed the existence of a formal problem definition. However, it was
found that such a unitary definition of what constitutes ‘the problem’
was often missing in organizational problem situations, where different
stakeholders often have very divergent views on what constitutes ‘the
problem’”. I would add that the Systems Engineering approach also
makes a number of (usually unstated) assumptions. Specifically that:

1. The problem and solution space can be modeled as a
single definitive version of ‘the truth’ that is common to all
stakeholders

2. The environment (the world!) can be baselined to facilitate
analysis and does not move on faster than the baseline and the
problem solving work depending on can react

3. The time taken to assemble the baseline and develop a solution
is short enough that the solution is relevant and valuable at the
time it is implemented

Every movement has its gurus, and Soft Systems is no exception. The
first mainstream work to encode and specialize the knowledge around
Soft Systems centered around Lancaster University, UK in the mid-
1960s pioneered by Prof Gwilym Jenkins and subsequently by Dr. Brian
Wilson, before reaching the mass market through the work of Prof. Peter
Checkland. A number of useful references are included at the end of this
White Paper.

Despite the name, the Soft Systems Method does not differentiate
between ‘Soft’ and ‘Hard’ systems. It does not even treat ‘Hard’ and

© Orbus Software 20145

‘Soft’ as features of the problem under consideration – they are features
of the relationship between the problem and the person interested in
it. They relate to the way in which the problem analyst perceives and
interacts with the situation. For this reason it provides the best reference
point for Enterprise Architecture and an inclusive, systematic framework
for integrating Engineering and Soft Systems approaches. For the sake
of clarity in this series of papers, provided we accept that we construct
our viewpoint to represent a ‘system’ and that ‘Hard’ and ‘Soft’ are not
intrinsic to the system, we shall refer to ‘Hard’ and ‘Soft’ Systems.

For further reading and a very concise and complete account, see
Ref [5].

Key Concepts
For the purpose of this series of white papers and in line with the
general consensus in the field, Soft Systems and Hard Systems are
treated as views of a system, rather than features of the system itself.
Hard Systems are generally well suited to treatment with a Systems
Engineering approach, Soft Systems with Soft Systems methods.

These viewpoints can be differentiated as follows:

soft
systems

view

Hard
Systems

View

scientific

technological

mechanical

material

psychological

cultural

social

fixed &
stable

deterministic

stochastic

THE
truth

Version
of truth³

objective

subjective

emergent

personal

ontological

epistemological

formal
definition

informal
definition

Figure 1: The Relationship between Soft and Hard System viewpoints

© Orbus Software 20146

The strong message from these differentiating features is that Hard
Systems are an integrated subset of Soft Systems. This integration is
even more apparent when the similarities between Soft System Methods
and Systems Engineering are considered:

1. Reliance on some form of Conceptual Modeling: modeling is an
integral part of both approaches. Models are used to explore and define
concepts and as a means of capturing and communicating between
stakeholders. Modeling is used as much to articulate the problem as
define the solution. Systems Engineering typically uses (or aspires to use)
more rigorous languages (e.g. ArchiMate® for Architecture), trading off
inclusion (e.g. of non-Architect stakeholders) for rigor in specification.
Soft Systems Methods use models that are targeted at facilitating

engagement between diverse stakeholders,
using informal diagrammatic and narrative
models.

The Rich Picture is a good example of this [Ref
6] – it is typically very informal, engaging and
expressive, providing context and situational
information that relies little on abstraction and
is directly meaningful to stakeholder day-
to-day experience. Its primary purpose is to
enable diverse stakeholders to engage with the
problem and solution space and think deeply
about both. A Rich Picture typically focuses on

Figure 2: The Rich Picture

Soft System View Hard System View

Inclusive of scientific, technological, mechanical, material,
psychological, social and cultural domains.

Inclusive of scientific, technological, mechanical, material
domains. Exclusive of psychological, social and cultural
domains.

Accepts that Systems develop emergent properties that cannot be
foreseen at the outset. Provides concepts and tools to cater for this.

Assumes fixed and defined System and environment in
which it operates. Unanticipated changes to either require
re-entry into the Systems Engineering process at some
point.

Provides the ability to integrate Systems that exhibit features and be-
havior that may be random, stochastic (i.e. statistical) and deterministic
(i.e. individual cases predictable by analysis).

Deals effectively with deterministic systems and
environments in which they exist. Has limited ability to deal
with stochastic systems.

Tolerant and accepting of subjectivity and multiple ‘versions of the
truth’. Treats all models as viewpoints that express how stakeholders
perceive the system. Accepting of dissonant and inconsistent
viewpoints.

Considers multiple viewpoints as filtered views of a single,
objective, canonical definition of a system or problem.
Assumes and requires common agreement across all
stakeholders, convergence and consistency of viewpoints.

Conceives of ‘System’ as an epistemological entity – i.e. as made up
of conceptual and mental schemas and models that determine the
perception of what the system is. Considers the perceptual schemas
are an integral part of the ‘system’.

Conceives of ‘System’ as made up of ontological entities
– i.e. representation of, or actual entities physically existing
or proposed to exist in the real world. The ‘system’ is
independent of the way in which it is described.

Integrates Systems and problems that can and cannot be represented
by formal definitions. Formal definition may not be possible either
because of the nature of the System or because there is no suitable
formal language with which to describe it.

Requires that problems and Systems can be represented
by formal definitions (i.e. having conventionally recognized
form, structure or set of rules). Assumes that they are
structured, well-formed and logical.

Recognizes the significance of stakeholder values and world views
(Weltanschauung) and their impact on the scope and shape of the
System.

Recognizes stakeholder values and world views only to the
extent that they filter the information that represents the
system and separates stakeholder concerns.

Table 1: Differences

© Orbus Software 20147

the relationships between things rather than just cataloguing types
of things.

2. Concern with System boundaries: the formal term for this in
Systems Engineering terms is ‘System of Interest’. Soft Systems
methods do not have a specific name for this, however it regularly
appears in Rich Pictures and built in to the notion of ‘Environmental
Constraints’. If there is a difference between these worlds, it is more in
the way that Soft Systems methods are ready/willing/able to flex the
boundary, or make it more porous. Both approaches recognize the
concept of System of Systems, although again, Systems Engineering
has rather more formal definition of it.

3. Facilitation of iterative analysis: Soft System methods make
iterative model development a core and integral part of the approach.
There is a clear expectation among stakeholders who engage in the
process that the models will change – in fact, it is encouraged. Flexibility
of the models is critical to the promotion of iterative analysis and creative
problem solving. Systems Engineering, while it aspires to the use of
models for similar effect, often, due to time constraints, fixes the models
earlier in the exploration process whether as a ‘straw’ man’ or ‘draft’
and only change under a well-argued (and sometimes courageous)
challenge. If there is a difference between the approaches, it is that Soft
Systems methods build in resistance to premature fixing of problem and
solution definition, while Systems Engineering, although not by intent,
builds in resistance to change for fear of undermining the integrity of the
models.

4. Suitable for the analysis and specification of Information
Systems: probably because Soft Systems methods emerged to
address the shortcomings of Systems Engineering, its development from
that world means that it is closely connected to the systems analysis
of software intensive systems. Although it is not specialized for that
purpose, it (or elements of it) has regularly been used in the Information
Systems industry. Systems Engineering, on the other hand, is often
specialized to deal with the specifics of software intensive systems as an
element of a broader and more diverse set of systems.

5. Considers inter-dependency of System components as a
critical feature: this is a major area of common ground, although
often from different perspectives. Soft Systems methods consider the
relationships between things to be the key feature that gives the things
meaning. Systems Engineering considers the relationships almost as
important, but mainly for the purpose of effectively managing inter-
component dependencies, decoupling of systems and controlling of
change. Enterprise Architecture often falls short in this area as the
cataloguing of things takes precedence over understanding their
relationships.

© Orbus Software 20148

6. Implementation through an iterative
multi-step approach: this is another major
area of common ground, often with direct
correspondence between the approaches.
The table below provides a very approximate
expression of the relationships, using TOGAF®
to specialize Systems Engineering.

7. Reliance on categories/types of
Stakeholder: both approaches codify the
types of stakeholder and influences on the
process. Soft Systems methods typically use
the ‘CATWOE’ mnemonic to ensure inclusion,
covering: Clients (beneficiaries or victims),
Actors (enact the system), Transformation
(transformations performed by the system),

Worldview (values that give the system meaning), Owner (authority over
the system), Environment Constraints (external constraints).

If we can re-imagine Enterprise Architecture as a subset of Systems
Engineering, and Systems Engineering as a subset of Soft Systems, the
Enterprise Architect can be well positioned to fully mobilize a rich set
of concepts, techniques and tools to deal with an increasingly diverse,
complex and big world.

The next white paper in this series explores in more detail the notion of
the Enterprise as a complex engineering object and the limits of adopting
an Engineering-intensive approach to Enterprise Architecture. It proposes
how integrating it with Soft Systems provide a comprehensive set of
tools for most situations.

Soft Systems methods Systems Engineering/TOGAF®

Enter the problem, situation Feasibility Study and Concept
Exploration/Preliminary Phase

Express the problem situation Concept if Operations/Architecture
Vision

Formulate root definitions of
relevant systems

System Requirements/Conceptual
Architecture (Business, Information
Systems & Technology)

Build conceptual models of
(human) activity systems

High Level Design/Logical
Architecture

Compare the models with the
real world

Optioneering and Tradespace
Exploration/Opportunities and
Solutions

Define changes that are
desirable and feasible

Option Selection/Migration Planning

Take action to improve the real
world situation

Implementation/Implementation &
Governance

Table 2: Multi-step Processes

© Copyright 2014 Orbus Software. All rights reserved.

No part of this publication may be reproduced, resold, stored in a retrieval system, or distributed in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the copyright owner.

Such requests for permission or any other comments relating to the material contained in this document may be submitted
to: marketing@orbussoftware.com

References:
[1] The Art of Judgment Series. Orbus:
 http://www.orbussoftware.com/resources/authors/ceri-williams/

[2] Weinberg, Gerald M: An Introduction to General Systems Thinking.
 ISBN: 0-932633-49-8

[3] Wicked Problems: https://en.wikipedia.org/wiki/Wicked_problem

[4] Soft Systems Method: https://en.wikipedia.org/wiki/Soft_systems

[5] Checkland, P & Poulter, J: learning for Action – A Short Definitive
Account of Soft Systems Methodology and its use for Practitioners,
Teachers and Students. ISBN: 9780470025543

[6] Rich Pictures: http://systems.open.ac.uk/materials/T552/pages/rich/
rp-what.html The Open University

Also, for books that will change your life:

[7] Vickers, G (1995) The Art of Judgment Centenary Edition.
ISBN: 0-8039-7362-4

[8] Koberg, Dan & Bagnall, Jim: the Universal Traveller…a Soft-Systems
guide to creativity, problem solving and the process of reaching
goals. http://www.amazon.co.uk/Universal-Traveler-Soft-Systems-
Creativity-Problem-Solving/dp/1560526793/ref=sr_1_1?ie=UTF8&qid
=1389375638&sr=8-1&keywords=universal+traveller

Orbus Software
3rd Floor
111 Buckingham Palace Road
London
SW1W 0SR
United Kingdom

+44 (0) 870 991 1851
enquiries@orbussoftware.com
www.orbussoftware.com

