
White Paper
Agent-Oriented Modeling
using BPMN with an example
in Manufacturing

In an earlier white paper, I explained what an agent-oriented
model is and how BPMN can be used to represent an agent-
oriented model (Onggo 2013). In agent-oriented BPMN, we
model organizations and their processes as a collection of
interacting agents. Hence, we emphasize those agents who are
involved in the activities or processes within an organization (or
organizations in the case of inter-organizational interactions).
Agents may include people and social/organizational constructs,
such as departments. This will make us more aware of the
objectives and concerns of people who require or provide
services in the system being modeled, such as customers and
key human assets. Agents may also be non-human, such as
machines or software. In this case, agent-oriented modeling will
help in the performance analysis of individual agents and the
impact of their interactions on overall system performance.

In this white paper, I will elaborate the concept of agent-oriented
modeling and the steps involved in developing an agent-oriented model
using BPMN. To help the reader gain a better understanding of the
various steps, I will use a case study based on one of my past projects
for a manufacturing company.

Bhakti Stephan Onggo

WP0127	 |	 January 2014

Bhakti Stephan Onggo is a lecturer at

the Department of Management Science

at the Lancaster University Management

School, United Kingdom. His research

interests are in the areas of simulation

methodology (modeling paradigms

and conceptual modeling), simulation

technology (parallel and distributed

simulation, cloud-based simulation) and

business process modeling and simulation

applications. He has carried out a number

of consultation projects in healthcare,

manufacturing and public sector services

including the European Commission and a

UK Police department.

Access our free, extensive library at
www.orbussoftware.com/community

© Orbus Software 20142

Agent-Oriented Modeling
An agent-oriented modeling approach to represent the activities (or
processes) within an organization (or across organizations) is a modeling
approach in which the resulting model is formed by a set of autonomous
agents that interact with other agents and their environment through
a set of internal rules to achieve their objectives. This is different from
a process-oriented modeling approach, in which the resulting model
is formed by a set of interacting processes. These two approaches
view the world from different perspectives. Hence, each of them may
be useful for modeling different objectives. In some cases, they can be
used complementarily to provide a more complete view of the system
being modeled. The following sections explain the three main steps in
developing an agent-oriented model.

Identifying key agent types

The first step is the identification of key agent types. Some agents may
exhibit complex abilities (such as learning and making plans). These
agents can usually make independent decisions in order to achieve
certain objectives. Some agents can be very simple (e.g. they do not
plan and do not learn). These agents may perform certain activities
either in response to an external event (reactive agents) or perform
autonomous activities (autonomous agents). Academics have different
opinions about what an agent should be. However, this should not
deter us from applying agent-oriented modeling in practice, given its
many benefits. I have found that the understanding that agent-oriented
modeling is a modeling approach that views the world as interacting
agents is more useful in practice than worrying about whether our agents
have to be complex or not before we can call them agents. In fact, we
should keep our agent-oriented models as simple as possible.

Regardless of the complexity of agents, each agent has a set of
characteristics (or attributes) and is able to perform certain activities (or
behaviors). An agent type is a modeling construct that represents all the
agents that can be identified by using the same set of characteristics
and are able to perform the same set of activities. In a manufacturing
company, the types of agent can be a production manager or even a
machine (such as a laser-cutting or welding machine). A laser-cutting
machine is an agent type because all laser-cutting machines can be
identified using the same set of characteristics (such as make, model
and laser power) and are able to perform the same activities (e.g. cutting
and engraving). The identification of key agent types includes specifying
the characteristics and behaviors of each agent type.

© Orbus Software 20143

Identifying a relevant environment

Agents live (or are located) in an environment. When the environment
significantly affects the behavior of agents, it may be necessary to
include the environment in the model. If this is the case, we need to
represent that environment. Figure 1 shows a number of possible
topologies for the environment. The environment can be spatial when
physical locations are important. A physical location can be implemented
as a location on a map (linked to a geographical information system) or a
Euclidean space (when a map is not necessary or when the environment
does not cover a large geographical area, e.g. a building). In some
cases, a physical location can be simplified as a cell in a two-dimensional
grid (cellular automata). The environment topology can also be in the
form of a network when the connections between agents are important.
The network can be logical (social network) or physical (road network).

An environment may have certain behaviors (e.g. a location may become
less attractive). If an environment demonstrates autonomous behavior
(something happens even in the absence of an action performed by any
agent), we refer to this as a dynamic environment. In contrast, a static
(or reactive) environment does not exhibit any behaviors without actions
being initiated by an agent (e.g. an agent may pollute the environment).
In a manufacturing system, I have found that the Euclidean space is
usually suitable, especially when we need to include the movements of
various elements such as a forklift or items on a conveyor belt.

Defining interactions

The final step is to define the relevant interactions between different
agent types and between an agent type and the environment. In agent-
oriented modeling, an interaction is implemented using message passing
or signal broadcasting. An initiating agent will send a message to the
target recipient (another agent or the environment). The recipient will then
react, based on a predefined behavior, as defined in the previous steps.
Similarly, an initiating agent may broadcast a signal and interested agents
or the environment will then react to this signal based on a predefined
behavior. In this step, we need to specify the communication lines and
the types of messages or signals that will be circulated.

© Orbus Software 20144

BPMN Pattern for Agent-Oriented Model
I have introduced a generic BPMN pattern that can be used to develop
an agent-oriented model (Onggo 2012, Onggo 2013b). The pattern
(Figure 2) should help practitioners to build an agent-oriented model
more easily. Before an agent does its job, it typically starts with an
initialization task. A finalization task may be needed before the agent
leaves the system.

Figure 1: Environment’s topologies (from top left, clockwise: GIS, Euclidean, network, cellular automata)

A
ge

nt
 ty

pe

Initialize Do main job Finalize

Figure 2: BPMN pattern for an agent

© Orbus Software 20145

The main job (or behavior) of an agent can be
split into two types: internal (done based on
conditions internal to the agent) and external
(done in response to a message or signal).
Figure 3 shows the expanded sub-process
“Do main job”. The agent will keep checking
(see the loop icon) to see if any of the internal
functions can be carried out, depending on
the conditions internal to the agent. External
functions are represented as BPMN event sub-
processes. These external functions are usually
non-interrupting (represented by dashes around
the sub-process). A non-interrupting event sub-
process is activated in response to an event
external to the agent, and its execution will not
terminate the execution of the currently active
internal or other external functions. If required,
an external function can be modeled as an
interrupting sub-process which will terminate
the execution of other sub-processes.

Case Study
In this example, I will apply the generic BPMN pattern to map the
processes in a manufacturing company. The company manufactures
various types of metal containers. The production process for each
product is relatively complex. Hence, given the limited space, I need
to limit our discussion to parts of the production process and to one
product only, which is called a metal box. The product is formed by a
base plate, a top plate and a side plate, which will be folded to form four
sides. A process-oriented view of the production process is shown in
Figure 4. The figure shows that once the top plate, base-plate and side
plate are ready, they will be welded to make a metal box.

Do main job

Do internal functions

Internal function 1

Internal function 2

Do external function 1

Event handler 1

Do external function 2

Event handler 2

Figure 3: Agent’s internal and external functions

© Orbus Software 20146

Agent types

In this example, we can consider the different machine types needed
in the process to be agent types. Each machine type will have certain
characteristics (e.g. a mean time between failures) and behaviors (e.g.
setting up and processing). We can also consider operators as agent
types, depending on our assumptions. If we assume that production
managers are more concerned with the number of machines needed
to increase production throughput, we can exclude operators from the
model. In this case, the agent types in our model are: press machine,
roller, milling machine, laser-cutting machine and welding. Typical
characteristics that need to be represented in the model include set-up
time, minimum and maximum numbers of items in a batch, processing
time and mean time between failures. For simplicity, in this example,
we assume we have enough forklifts to move items around the
manufacturing plant.

Environment

Although we assume that we have enough forklifts, we still want to
know whether the plant layout can support an increase in traffic. Hence,
a Euclidean space environment is needed. In this case, the location
of each machine, the paths and the plan layout will be included in the
analysis. BPMN does not support a representation of the environment
but most simulation software supports the use of a Euclidean space.

To
p

Pl
at

e

Forming Press Milling Laser cutting

Si
de

 P
la

te

Laser cutting Forming Press Rolling Welding

B
as

e
Pl

at
e

Forming Press

Top plate is ready

Base plate is ready

Figure 4: Process-oriented view of a manufacturing process

© Orbus Software 20147

Interactions

In this example, interactions between agent types occur when a work-in-
progress is ready for the next machine. Each machine type in the model
is represented using a pool, as shown in the pattern (Figure 2). Given the
limited space, in Figure 5, we only show the details inside the “Do main
job” sub-process of each machine type. The figure shows that the laser-
cutting machine has two main job types (represented as sub-processes):
cutting the side plate and cutting the top plate. Each of milling machine,
roller and welding has only one job type. The laser-cutting machine has
three job types. All job types are shown as sub-processes, because
they may consist of a number of tasks, such as set-up and processing.
Each time a job is completed, a message is sent to trigger the next
production stage. Each passing message represents the movement of a
work-in-progress in the manufacturing plant. In this scenario, the agents
are simple agents (e.g. they do not have the ability to learn). However,
it is possible to include more complex behaviors (e.g. learning) into
various agent types (e.g. operators, maintenance team, intelligent control
systems).

Both process-oriented modeling and agent-oriented modelling are
suitable for this example. The use of an agent-oriented model, as shown
in Figure 5, emphasizes the various work done by each machine and
the interactions between machines (or work centers). Hence, it has clear
benefits such as allowing us to conduct analyses that require information
at the machine level (e.g. machine utilization, production scheduling, and
bottleneck analysis) and to analyze the impact of interactions on overall
performance (e.g. production throughput).

Press Machine: Do main job

Forming press top plate

Press top plate

Forming press side plate

Press side plate

Forming press base plate

Press base plate

Milling Machine: Do main job

Milling top plate

Mill top plate

Laser Cutting Machine: Do main job

Cutting top plate

Cut top plate

Cutting side plate

Cut side plate

Welding: Do main job

Welding side plate

Weld side plate

Roller: Do main job

Rolling side plate

Roll side plate

Figure 5: Agent-oriented view of the manufacturing process

© Orbus Software 20148

Conclusion
This work paper is the continuation of an earlier white paper (Onggo
2013a). In this white paper, I have elaborated and explained agent-
oriented modeling and applied it to a case study in manufacturing. To
build a model using an agent-oriented approach requires three main
steps: identifying agent types, identifying a relevant environment and
specifying interactions.

I have also proposed a generic BPMN template that can be used to
make the development of an agent-oriented model easier. People
have identified the need to integrate BPMN and simulation, because
simulation is one of the best techniques for analyzing and designing a
business process model. We have seen that the number of simulation
software packages that support BPMN has increased. Although BPMN
can only represent agent types and their interactions, most simulation
software offers a facility to link a simulation model with the environment,
such as Euclidean space or Geographical Information System.

© Copyright 2014 Orbus Software. All rights reserved.

No part of this publication may be reproduced, resold, stored in a retrieval system, or distributed in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the copyright owner.

Such requests for permission or any other comments relating to the material contained in this document may be submitted
to: marketing@orbussoftware.com

References
Onggo, B.S.S. (2013a) Agent-Oriented BPMN. Orbus white paper series.
Available from http://www.orbussoftware.com/downloads/white-papers/
agent-oriented-bpmn/

Onggo, B.S.S. (2013b) ‘Agent-Based Simulation Model Representation
using BPMN’, in Fonseca, P. et al. (Eds) Formal Languages for Computer
Simulation: Transdisciplinary Models and Applications. IGI Global, pp.
378-399.

Onggo, B.S.S. (2012) ‘BPMN pattern for agent-based simulation model
representation’, Proceedings of the 2012 Winter Simulation Conference,
9-12 December, Berlin, Germany. Los Alamitos, California: IEEE
Computer Society Press. Available from
http://informs-sim.org/wsc12papers/includes/files/con536.pdf

Orbus Software
3rd Floor
111 Buckingham Palace Road
London
SW1W 0SR
United Kingdom

+44 (0) 870 991 1851
enquiries@orbussoftware.com
www.orbussoftware.com

