
White Paper
Architecture Skills: Abstraction

One of the key characteristics of architecture is looking at the
‘big picture’, but a major challenge is that we can’t present the
big picture on a great big piece of paper – it has to fit on a single
sheet or model. In order to do that, we have to come up with
new concepts that summarize the overall picture into a small
number of elements and relationships. We can do this through
a variety of techniques, like divide-and-conquer, categorization,
generalization, and so on.

The principles of abstraction are aimed at just these problems. This
paper will provide an introduction to abstraction and show how it applies
to architectural modeling.

What is Abstraction?
Wikipedia offers several different definitions for abstraction that I’ve
adapted below:

1) Abstraction is a conceptual process by which concepts are derived
from the usage and classification of signifiers, first principles, or other
methods. “An abstraction” is the product of this process—a concept
that acts as a super-categorical noun for all subordinate concepts,
and connects any related concepts as a group, field, or category.
Conceptual abstractions may be formed by reducing the information
content of a concept typically to retain only information that is relevant
for a particular purpose.

When we examine this definition, we see some important points.
Abstractions are derived or inferred based on principles. Abstractions

Mike Rosen

WP0163 | September 2014

Access our free, extensive library at
www.orbussoftware.com/community

Mike Rosen is Chief Scientist at

Wilton Mike Rosen is Chief Scientist

at Wilton Consulting Group where he

provides expert consulting in Business

Architecture, Enterprise Architecture,

and Service-Oriented Architecture. He is

also a founding member of the Business

Architecture Guild and Editorial Director

for SOA Institute. His current emphasis is

on the implementation of Enterprise and

Business Architecture and programs. He

has years of experience in the architecture

and design of solutions for global

corporations and 20+ years of product

development experience.

Mr. Rosen is an internationally recognized

speaker and author of several books

including “Applied SOA: Architecture and

Design Strategies”. He welcomes your

comments at

Mike.Rosen@WiltonConsultingGroup.com

http://www.orbussoftware.com/community
mailto:Mike.Rosen%40WiltonConsultingGroup.com?subject=RE%3A%20WP0163%20comments%20to%20Mike%20Rosen

© Orbus Software 20142

describe related concepts and may be formed by obscuring information
that is deemed irrelevant in a given context.

2) Abstraction is a process or result of generalization, removal of
properties, or distancing of ideas from objects. This may refer in
particular to one of the following:

 • Abstraction (computer science), a process of hiding details of
implementation in programs and data

 - Abstraction layers, an application of abstraction in
computing

 - Hardware abstraction, an abstraction layer on top of
hardware

 • Abstraction (linguistics)

 • Abstraction (mathematics), a process of removing the
dependence of a mathematical concept on real-world objects

 - Lambda abstraction, a kind of term in lambda calculus

Again, we see that abstraction is a process of selecting pertinent
information, where what is pertinent is determined by the context (and
the skillful architect). We are also told that abstraction applies across a
broad range of topics, not just to computer science or architecture.

Types of Abstraction
The definition above lists three specific techniques of abstraction that
can be applied across a wide range of domains:

 • Generalization - A generalization is obtained by inference from
specific cases of a concept. More precisely, it is an extension
of the concept to less-specific criteria. Generalizations describe
a domain or set of elements, as well as one or more common
characteristics shared by those elements. Verification can be
used to determine whether a generalization holds for a given
situation:

 o Of any two related concepts, such as A and B, A is a
“generalization” of B, and B is a special case of A, if and
only if:

 • Every instance of concept B is also an instance of
concept A; and

 • There are instances of concept A which are not
instances of concept B.

Object modelers should be very familiar with the concept of
generalization and how it is used to define groups and categories.

© Orbus Software 20143

 • Removal of Properties – Abstraction has also been described
as the “suppression of irrelevant detail”. We remove properties
that are not relevant in a particular context, in other words, that
are not important in conveying specific concepts to a specific
audience.

 • Distancing of Ideas – Objects contain concrete instantiations
of specific concepts and ideas. We can use abstraction to
separate the ideas themselves from the objects that reify them.

Figure 1 shows two typical examples of abstraction. On the left is
a common representation of enterprise architecture that illustrates
partitioning. In this example, the whole of enterprise architecture is
divided (partitioned) into four domains (abstractions) based on subject
area. Each domain represents a generalization of a set of related
architectural concerns and elements.

On the right is an example of subtyping which illustrates two of the
techniques. First, it illustrates the typical generalization / specialization
relationship. Account is a generalization of checking and savings
accounts. Checking and saving accounts are specializations of account.
In this example, I have also illustrated account as an “abstract type”
(signified by the italics), meaning that a generalized account cannot be
instantiated, only a specialized account can exist. Note that Account
is also an example of removal of properties. Only those properties that
are important to all types of accounts are relevant in the context of the
general account.

Figure 1 – Examples of Abstraction

© Orbus Software 20144

Abstraction Levels
More typically, removal of properties is associated with levels of
abstraction. Three common levels of architectural abstraction,
conceptual, logical, and physical are illustrated on the left side of figure 2.

While the definitions of each level can be a little fuzzy we can provide
some guidelines:

 • Conceptual - Conceptual models focus on the key concepts
and relationship of the whole solution, not on how the system
works. As such, they are generally static models where
connectors, if present, show relationships, not flows.

 • Logical – Logical models describe how a solution works,
in terms of function and logical relationships between the
resources, activities, outputs, and outcomes. They can show a
static view or a dynamic view.

 • Physical – Physical models refer to specific products,
protocols, data representation, network capabilities, server
specifications, hardware requirements, and other information
related to deploying the proposed system.

Conceptual models are more abstract than logical models, which
are more abstract than physical models. We describe the process of
transforming one model to another as refinement when we reduce the
level of abstraction. Note that the transformation of models between
levels involves more than just adding detail. Abstract concepts are
transformed into more concrete concepts during transformation. For
example, the logical concept of a ‘customer’, may be transformed into
a logical customer entity, and then transformed into a set of tables and
joins at the physical level. We can also transform models in the other
direction, going from physical (more refined) to logical, to conceptual
(less refined). We call this process abstraction.

Figure 2 –Abstraction Levels

© Orbus Software 20145

Don’t confuse abstraction and domains

A common mistake is to equate the levels of abstractions with
architectural domains as shown on the right side of figure 2. While it
is coincidental that many business models are at the conceptual level,
application models are more logical, and technology models may be
physical, it is not always the case. For example, many organizations
with have conceptual, logical, and physical levels of information / data
models, or of models in the application domain. Abstraction levels affect
the scope, concepts, and details that are represented in a model, not the
subject matter.

Abstraction Layers

Another common application of abstraction is to partition complexity
into cohesive layers that interact through interfaces. Figure 3 illustrates
perhaps one of the best known and long lasting examples of
architectural layers, the ISO Open System Interconnect (OSI).

In this case, the layers are an abstraction of the role that is responsible
for executing specific functions in the communications of data. Solely

Figure 3 –Abstraction Layers

© Orbus Software 20146

Tips for Abstraction
As architects, models are one of our major work products, and
abstraction is one of our most important tools in creating these
models. Here are some tips for using abstraction to create successful
architectural models:

 • Make the model fit for purpose – Every model is intended
to inform a particular stakeholder, or set of stakeholders, with
information that is relative to their role and that is useful in
supporting their decision making. The first step in a good model
is to determine who the stakeholders are, and what information
you are trying to convey to support what type of decision.
This will tell you what level of abstraction (conceptual, logical,
physical) and detail is appropriate. If you can’t answer these
questions about your models, then chances are good that the
models will not be of much use to anyone.

 • Capture the view of the big picture. Put things in context
– Understand the context that the system or solution must
fit within. Is the context the enterprise, a business strategy, a
channel, a subsystem? Make sure the context is consistent with
the level of abstraction.

 • Determine the fundamental elements and relationships
– Given the context, what are the fundamental concepts
(elements) that relate to the stakeholder role? What are the
relationships between concepts? Use generalization to create
abstract concepts. Use removal of properties to suppress
irrelevant details.

 • A good model must be clear and easily understandable
– In general, a model should not have more than 5-8 different
concepts (although you may have several instances of each
concept). The model should be consistent in terms of level
of abstraction and detail across all of the concepts and
relationships. Typically, the more abstract a model is, the fewer
total elements it will contain. As a rule of thumb, a conceptual
model may have 25-50 total elements whereas a physical
model could contain well over 100.

 • Explore different perspectives to capture the right
elements and relationships – Be agile. Try initial models from
a few different perspectives with different stakeholder to see
what works, and then go back and add polish and detail to the
best ones. Better yet, engage the stakeholders in helping to
create the initial models.

© Copyright 2014 Orbus Software. All rights reserved.

No part of this publication may be reproduced, resold, stored in a retrieval system, or distributed in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the copyright owner.

Such requests for permission or any other comments relating to the material contained in this document may be submitted
to: marketing@orbussoftware.com

 • The diagram must appeal to the stakeholder and highlight
their viewpoint – Again, this is reinforcing the first point about
being fit for purpose. If a stakeholder does not find the model
useful, interesting, or appealing, then they probably won’t use
it. If it’s not used, you have not only wasted your time, but also
failed to have your architecture implemented.

Conclusion
Architects need to collect information and generate solutions across a
broad context, and then distil that information in a way that presents the
important concepts and relationships, in the big picture context, to a
range of different stakeholders. Typically, architects create models and
diagrams as a primary means of communication. Abstraction provides
the architect with a set of techniques to determine what concepts,
information, and detail to include in order to create models which
influence and impact decisions.

Orbus Software
3rd Floor
111 Buckingham Palace Road
London
SW1W 0SR
United Kingdom

+44 (0) 870 991 1851
enquiries@orbussoftware.com
www.orbussoftware.com

mailto:marketing%40orbussoftware.com?subject=Re%3A%20WP0153%20enquiry
mailto:enquiries%40orbussoftware.com?subject=Re%3A%20WP0153%20enquiry
http://www.orbussoftware.com

