
White Paper
Integrating the Soft Systems Process
‘Stages’ with EA Frameworks

The previous white papers in this series [Ref 1] focused on the
general features of SSM and how they differ and complement
those of traditional engineering-inspired methods and frameworks.
They considered how SSM is inclusive of all areas of the situation/
action space (i.e. scientific, technological, mechanical, material,
as well as psychological, social and cultural), while an engineering
approach excludes psychological, social and cultural influences.
They described how an Enterprise Architect can appropriate
elements of SSM and related social and cultural disciplines and
blend them in as a defined part of a holistic approach to Enterprise
Architecture.

This fifth paper in the series starts to explore the processes, steps
and stages that the Soft Systems Methodology provides to guide
practitioners, and the way in which they afford well-formed integration
points for blending with engineering disciplines such as INCOSE and
TOGAF. This paper sets the scene for the papers that follow to explore
what SSM can add to commonly encountered Architecture Methods to
enrich them and make them more effective.

There’s no substitute for reading the papers themselves, but for readers
short of time, the next section is an extract taken from Paper 1. It
provides a very short outline of the Soft Systems Method - what it is,
where it came from, and why it is significant. Readers wishing to deepen
their background in the topic before embarking on this Paper can read
the previous papers [Ref 1]. Readers already familiar with these papers
can skip the next section.

Ceri Williams

WP0165	 |	 October 2014

Ceri has thirty years in the IT industry,

originally delivering complex control

systems and subsequently broadening

focus to Enterprise Architecture,

Governance and transformation of the

IT function. Working as a chief architect,

consultant and coach, he enables FTSE

250 organizations to make medium and

long term decisions on the shape of the

Enterprise Architecture and positioning of

the IT function.

He advocates putting people at the heart

of technology and business change

with focus on the human enablers and

constraints. His work deals with the

way in which rigorous engineering and

architecture disciplines are integrated with

the cognitive and behavioral capabilities of

the people who practice them.
Access our free, extensive library at
www.orbussoftware.com/community

www.orbussoftware.com/community

© Orbus Software 20142

A (very) Short History of Soft Systems
In a nutshell - the Soft Systems Methodology (SSM) is a systemic
approach for tackling real-world problematic situations. Soft Systems
provide a framework for users to deal with the kind of messy problem
situations that lack a formal problem definition. Enterprise Architecture
deals with “real-world problematic situations” and routinely encounters
“messy problem situations that lack a formal problem definition” – this is
why a re-imagining of Enterprise Architecture as a blend of Soft Systems
and Systems Engineering disciplines is now needed. This blend provides
us with a complete set of concepts and tools with which to operate in a
complex, people-centric environment.

The Soft Systems Methodology originally emerged in the 1960s in
response to problems encountered in tackling management and
organizational problems using a systems engineering approach. From
Ref [3]: “…the pattern of activity found in Systems Engineering – namely,
precisely define a need and then engineer a system to meet that need
using various techniques – was simply not rich enough to deal with the
buzzing complexity and confusion of management situations”. I would
add that the Systems Engineering approach also makes a number of
(usually unstated) assumptions. Specifically that:

1.	� The problem and solution space can be modeled as a single
definitive version of ‘the truth’ that is common to all stakeholders

2.	� A stable snapshot of the environment (people, process, material)
can be baselined and persists largely unchanged during engineering
analysis and solution delivery

3.	� The time taken to assemble the baseline and develop a solution is
short enough that the solution is relevant and valuable at the time it is
implemented

Every movement has its gurus, and Soft Systems is no exception. The
first mainstream work to encode and specialize the knowledge around
Soft Systems centered around Lancaster University, UK in the mid-1960s
pioneered by Professor Gwilym Jenkins and subsequently by Dr Brian
Wilson, before reaching the mass market through the work of Professor
Peter Checkland. A number of useful references are included at the end
of this White Paper.

Despite the name, the Soft Systems Method does not differentiate
between ‘Soft’ and ‘Hard’ systems. It does not even treat ‘Hard’ and
‘Soft’ as features of the problem under consideration – they are features
of the relationship between the problem and the person interested in
it. They relate to the way in which the problem analyst perceives and
interacts with the situation. For this reason it provides the best reference
point for Enterprise Architecture and an inclusive, systematic framework
for integrating Engineering and Soft Systems approaches. For the sake

© Orbus Software 20143

of clarity in this series of papers, provided we accept that we construct
our viewpoint to represent a ‘system’ and that ‘Hard’ and ‘Soft’ are not
intrinsic to the system, we shall refer to ‘Hard’ and ‘Soft’ Systems.

For further reading and a very concise and complete account, see [Ref 2].

Key Concepts
For the purpose of this series of White Papers and in line with the
general consensus in the field, Soft Systems and Hard Systems are
treated as views of a system, rather than features of the system itself.
Hard Systems are generally well suited to treatment with a Systems
Engineering approach, soft systems with Soft Systems Methods. These
viewpoints can be differentiated as described in Figure 1. The following
Table 1 considers the main distinctions between Hard and Soft systems.

Figure 1 – The Relationship between Soft and Hard System viewpoints

© Orbus Software 20144

Table 1 – Differences between Soft and Hard Systems Viewpoints

Soft System View	 Hard System View#

1

2

3

4

5

6

7

8

9

Inclusive of scientific, technological,
mechanical, material, psychological, social and
cultural domains.

Provides the ability to integrate Systems that
exhibit features and behavior that may be random,
stochastic (i.e. statistical) and deterministic (i.e.
individual cases predictable by analysis).

Inclusive of scientific, technological,
mechanical, material domains. Exclusive of
psychological, social and cultural domains.

Accepts that Systems develop emergent
properties that cannot be foreseen at the
outset. Provides concepts and tools to cater
for this.

Tolerant and accepting of subjectivity and
multiple ‘versions of the truth’. Treats all
models as viewpoints that express how
stakeholders perceive the system. Accepting
of dissonant and inconsistent viewpoints.

Conceives of ‘System’ as an epistemological
entity – i.e. as made up of conceptual and
mental schemas and models that determine
the perception of what the system is.
Considers the perceptual schemas are an
integral part of the ‘system’.

Integrates Systems and problems that can and
cannot be represented by formal definitions.
Formal definition may not be possible either
because of the nature of the System or
because there is no suitable formal language
with which to describe it.

Recognizes the significance of stakeholder
values and world views (Weltanschauung) and
their impact on the scope and shape of the
System.

Inclusive of change to structures, processes
and attitudes as a means of delivering
improvement to a situation.

Seeks problem and ‘solution’ definitions,
actions and commitment to change that
stakeholders can live with, rather than
that they all agree on. SSM calls this
‘Accommodation’ between differing views.

Assumes fixed and defined System and
environment in which it operates. Unanticipated
changes to either require re-entry into the
Systems Engineering process at some point.

Deals effectively with deterministic systems
and environments in which they exist. Has
limited ability to deal with stochastic systems.

Considers multiple viewpoints as filtered views
of a single, objective, canonical definition of
a system or problem. Assumes and requires
common agreement across all stakeholders,
convergence and consistency of viewpoints.

Conceives of ‘System’ as made up of
ontological entities – i.e. representation of, or
actual entities physically existing or proposed
to exist in the real world. The ‘system’
is independent of the way in which it is
described.

Requires that problems and Systems can be
represented by formal definitions (i.e. having
conventionally recognized form, structure or
set of rules). Assumes that they are structured,
well-formed and logical.

Recognizes stakeholder values and world
views only to the extent that they filter the
information that represents the system and
separates stakeholder concerns.

Inclusive of structures and processes, does
not cater for attitudes.

Seeks consensus across stakeholders and
requires that they believe the same ‘truth’.
Treats alternative views as incorrect and in
need of change.

© Orbus Software 20145

Soft Systems Processes
This paper assumes that the reader will be familiar with structured
approaches to Enterprise Architecture and other similar analytical &
engineering disciplines. All the industry favourites such as TOGAF,
MoDAF, INCOSE, ITIL & DSDM Atern all make intensive use of key
concepts, artefacts, processes and procedures. This rigorous approach
is helpful in defining the frameworks in such a way that they lend
themselves to practical implementation and inter-framework integration.

The Soft Systems Methodology pre-dates all of these and leaves more
room for ambiguity and interpretation by the practitioner – although that’s
not to say that the industry favourites listed above are by any means
free from ambiguity. SSM also focuses on process steps. One important
enhancement to the common approach to structuring a method, is
to explicitly make the practitioner a Methodologist. The dictionary
definition of Methodology is “the study of Methods”. SSM includes the
development of the method by which participants organize their effort as
an integral part of the method itself.

What appears slightly mind-bending at first, is in fact familiar as common
practice among Enterprise Architects. It is not uncommon for an EA
to have to find a way to link a system delivery method such as Agile/
DSDM with a strategic planning method such as TOGAF. It is also not
uncommon to find a way to link one EA framework with another. This
demand for method integration is partly a result of a sort of ‘best of
breed’ approach, partly because stakeholders come from different
worlds (e.g. Service Management & Operations will be familiar with ITIL)
and partly because due to the force of circumstance, such as a merger
or outsourcing decision, where different worlds are compelled to collide.

The traditional approach to integrating EA and System Delivery
Frameworks is an analytical one, typically involving the cross-referencing
and mapping of Roles, Processes and Products. This sort of approach is
good as far as it goes. However, if you want the method to be inclusive
of psychological, social & cultural features, the method integration will
need to be rather more sophisticated. This paper proposes that if SSM
becomes the ‘hub’, then all other methods can be related, interact
through it in terms of People, Process and Product and be enriched by
the availability of cultural features including: beliefs, values & behaviour
norms (see Paper 4).

Figure 1 illustrates this as a ‘hub and spoke’ model, very similar to an
efficient model for Information Systems integration – this works just as
well for concepts and methods as it does for the exchange of digital
control signals and data between IT systems.

© Orbus Software 20146

Further exploration of this proposition requires some more detailed
consideration of the processes and ‘Steps’ involved. SSM recognizes
that most people are hard wired to be able to work with the idea of ‘step
by step’ instructions – this is a pretty universal capability that applies
as much to assembling an IKEA chair as building a target architecture.
The art of judgment when applying these steps lies in how much detail
and precision is of value, and how to manage iterations and feedback
between the steps – and, critically, when to stop and move on. Figure 2
provides an outline of the principal SSM ‘Stages’.

Figure 2 – Method Integration

Figure 3 – SSM ‘Stages’

Enterprise
Architecture (e.g.
MoDAF, TOGAF)

Delivery Methods
(e.g. DSDM

Atern)

Service Life-cycle
Management

(e.g. ITIL)

Management
Frameworks
(e.g. COBIT)

Integration

Integration

SSM

Soft Systems
Methodology

‘Hub’

Integration

IntegrationPeople People

People People

People

People

Beliefs

People

People

Process Process

Process Process

Process

Process

Values

Artefacts

Process

Process

Product Product

Product Product

Product

Product

Behavioral
Norms

Patterns of
Behavior

Product

Product

© Orbus Software 20147

The engineering mind will be tempted to interpret the flows in Figure
2 as a sort of sequential algorithm that is predictable and contains
deterministic outcomes. There is some value in this in terms of organizing
the activity needed to undertake an SSM project, but adherence to
the activities and flows as anything other than a reminder of general
principles of the method would build in inflexibility and undermine its
value. From Ref [3] “Speaking logically, then, SSM articulates a process
of organized finding out about a problem situation, the finding out then
leading to taking deliberate action to bring about improvement in the
situation.”

Paper 1 made an initial attempt to map SSM Stages to TOGAF – in
the light of subsequent experience, this now seems over-simplistic, but
worth re-iterating, framed more as the alignment of ‘centers of gravity’
rather than a neat mapping along activity boundaries:

The principal ‘Steps’ making up SSM are summarised below:

1. ��Enter the problematic situation: this involves acceptance by the
participants - that they are prepared to assume responsibility for
understanding a situation and working through improvements to it.
It is important at this stage for participants to consider carefully what
they can accept or must practically reject.

2. �Express the problematic situation: involves an exploration of
the situation and initial capture of that understanding, often in the
form of ‘rich pictures’ and the beginnings of the conceptual models.
Decisions at this point are made on what to include and exclude, and
these decisions are captured explicitly.

Soft Systems methods Systems Engineering/TOGAF

Enter the problem situation	

Formulate root definitions of relevant systems

Feasibility Study & Concept Exploration/
Preliminary Phase

Express the problem situation

Build conceptual models of (human) activity
systems

Compare the models with the real world

Define changes that are desirable and feasible

Take action to improve the real world situation

Concept if Operations/Architecture Vision

System Requirements/Conceptual Architecture
(Business, Information Systems & Technology)

High Level Design/Logical Architecture

Optioneering & Tradespace Exploration/
Opportunities & Solutions

Option Selection/Migration Planning

Implementation/Implementation & Governance

Table 2 – Multi-step Processes

© Orbus Software 20148

3. �Formulate root definitions of relevant systems of purposeful
activity: consists of the explicit identification and capture of the
relevant systems that carry out the purposeful activity of the situation.
Typically these definitions would be shaped through consideration
of: customers & stakeholders, actions & activities, transformation
processes, world views, owners and environmental constraints (or
CATWOE for short).

4. �Build Conceptual Models of the systems named in the root
definitions: further develops the root definitions to assemble the
verbs describing the RD activities and structuring them to account for
their relationships and dependencies. These models represent both
operational features of the systems, as well as the ‘meta-system’
needed to monitor and adapt them to environmental changes.

5. �Compare the models with the real world: more than just a ‘gap
analysis’ of algorithms and data structures, this covers the rich set
of features that SSM supports in modeling – including beliefs, values
and behavioral norms.

6. �Define changes that are desirable and feasible: a key part of this
Step involves the participants working with each-other to determine
what is important, and how different and similar their world views are.
The aim here is to reach accommodations rather than consensus (see
Paper 4).

7. �Take action to improve the real world situation: focused on
taking action and learning from it – where the learning may generate
a revisiting of any or all of the previous stages. The participant’s
perception of the system will always significantly change by taking
action to change it as intended and as unintended consequences
become apparent.

One of the most difficult conversations with any sponsor who provides
money, time, and energy for an SSM project is that there are no
guarantees on how long it will take and what the outcomes will be. That
said, I would argue that SSM is really just being transparent here about
challenges that apply to all other engineering approaches, but about
which they say little – they even create an illusion and expectation of
predictability and repeatability that is very rarely justified. Metrics for
Enterprise Architecture development and implementation are very, very
rare. Even metrics for software and systems development are generally
patchy and poorly formed, even thirty years after formation of the
Function Point Users Group (see Ref [7]) and COCOMO (see Ref [8]).

SSM, like any other method that proposes implied or explicit steps,
benefits from implementation that tackles engineering conservatism and
the mind-set that prefers the comfort of a linear sequential process, to
an interactive one where feedback is incorporated. While not part of
the mainstream framework, SSM can learn something from software

© Orbus Software 20149

engineering – iconically captured by Barry Boehm in his spiral model for
software development, later revised as part of the Incremental Commit
(ICM) model (see Ref [5] and [6]):

The significance of this for the SSM movement is that each of the six
Steps can be worked through quickly as a single iteration of the spiral,
to provide a closed-loop learning cycle upon which to base the next
cycle – and so on. SSM is particularly well adapted to enable such an
implementation because learning and exploration is built in to every step
– it embraces the flux of ideas and tolerates the disturbance that results
from emergence of new information and perceptions. The engineering
mind-set applied to Enterprise Architecture, on the other hand – especially
when up against time constraints – tends toward locking down the Step
prematurely. Freezing a target architecture and embodying it in an EA
Tool repository while stakeholders are still interacting with it just stores up
trouble for later and pretty much guarantees the model will not persist.

Applying the spiral model to SSM might look something like this:

Figure 4 – Barry Boehm’s Spiral Model of Development

Figure 5 – The Spiral applied to SSM

© Orbus Software 201410

The reasons a spiral model works well for SSM are similar to the reasons
it works for software. As Barry Boehm observed, any linear or sequential
process is based on a number of assumptions:

	 •	 �The requirements are known in advance of implementation.

	 •	 �The requirements have no unresolved, high-risk implications, such
as risks due to cost, schedule, performance, safety, security, user
interfaces, organizational impacts, etc.

	 •	 �The nature of the requirements will not change very much during
development or evolution.

	 •	 �The requirements are compatible with all the key system
stakeholders’ expectations, including users, customer, developers,
maintainers, and investors.

	 •	 �The right architecture for implementing the requirements is well
understood.

	 •	 �There is enough calendar time to proceed sequentially.

Even in the real world of Systems Engineering and Enterprise
Architecture, it is rare for the Engineer or Architect to encounter these
conditions, rarer still for them to persist long enough to support any
form of strategic planning. Recognizing these early and adjusting the
EA approach to cater for them ensures that the Enterprise Architect
focuses on defining an Architecture that has the best chance of being
implemented.

White Paper #6:

White Paper #6 deep-dives into Steps 1 (enter the problem situation),
2 (express the problem situation) and 3 (Formulate root definitions of
relevant systems of purposeful activity) and continues to explore the
structured approach that the Soft Systems Methodology provides to
guide practitioners, and the way in which this affords integration points
for blending with engineering disciplines and frameworks.

I hope you have enjoyed this White Paper. Please get in touch if you have
views to offer on the topic and feedback on the series, either direct to
Orbus or via my email at: ceri.williams@theintegrationpractice.co.uk.

mailto:ceri.williams%40theintegrationpractice.co.uk?subject=Re%3A%20WP0165%20White%20Paper%20enquiry

© Copyright 2014 Orbus Software. All rights reserved.

No part of this publication may be reproduced, resold, stored in a retrieval system, or distributed in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the copyright owner.

Such requests for permission or any other comments relating to the material contained in this document may be submitted
to: marketing@orbussoftware.com

Orbus Software
3rd Floor
111 Buckingham Palace Road
London
SW1W 0SR
United Kingdom

+44 (0) 870 991 1851
enquiries@orbussoftware.com
www.orbussoftware.com

References:
[1] �Enterprise Architecture meets Soft Systems Series, Papers 1-3.

Orbus: www.orbussoftware.com/resources/authors/ceri-williams/

[2] �Checkland, P & Poulter, J: learning for Action – A Short Definitive
Account of Soft Systems Methodology and its use for Practitioners,
Teachers and Students. ISBN: 9780470025543

[3] �Checkland, P: Soft Systems Methodology www.yhcsleadership.
co.uk/download-file/43

[4] �Rosenhead, J (Ed): Rational Analysis for a Problematic World –
Problem Structuring Methods for Complexity, Uncertainty and
Conflict. John Wiley & Sons ISBN-10: 0471495239

[5] �Boehm B, “A Spiral Model of Software Development and
Enhancement”, IEEE Computer, IEEE, 21(5):61-72, May 1988

[6] �Boehm B, The Incremental Commit Model: http://ieee-stc.org/
proceedings/2007/pdfs/BB1686.pdf

[7] �International Function Point Users Group: www.ifpug.org/about-ifpug/
about-function-point-analysis/

[8] �The Constructive Cost Model (COCOMO): http://sunset.usc.edu/
csse/research/COCOMOII/cocomo_main.html

mailto:marketing@orbussoftware.com
mailto:enquiries@orbussoftware.com
www.orbussoftware.com
http://www.orbussoftware.com/resources/authors/ceri-williams/
http://www.yhcsleadership.co.uk/download-file/43
http://www.yhcsleadership.co.uk/download-file/43
http://ieee-stc.org/proceedings/2007/pdfs/BB1686.pdf
http://ieee-stc.org/proceedings/2007/pdfs/BB1686.pdf
http://www.ifpug.org/about-ifpug/about-function-point-analysis/
http://www.ifpug.org/about-ifpug/about-function-point-analysis/
http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html
http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html

