
White Paper
Four Tips for Successful Enterprise
Architecture Tool Implementation

When implementing an Enterprise Architecture (EA) tool, there are
many factors which influence its success including the number
of users, expectations of usage within the user community and
stakeholder attitude. Although these variables are important,
the team implementing the tool can help to mitigate these risk
factors by making good decisions throughout the implementation
process.

The four tips in this white paper are essentially key decision points within
the deployment process, along with some guidance to help navigate
through these decision points. The content of this paper is based partly
on research and partly on experiences of over fifty EA tool deployments
over nearly ten years.

Tip 1 – Select the Most Practical
Metamodel
Probably the most important factor when implementing an EA tool is
which metamodel to support. Successful implementations often look
back upon this decision as having been a critical success factor. When
the metamodel chosen is incompatible with the organization, common
complaints include:

 - I don’t understand how to create the views I require with the
viewpoints available

 - I know I can’t create the views I require with the viewpoints available

 - Consistently I am unable to create the relationships I need to build
my model

Ross Hocking
Business and Enterprise
Architecture Consultant

WP0181 | March 2015

Ross has experience delivering Process,

Enterprise Architecture and Governance,

Risk & Compliance projects globally

across multiple sectors but with a focus in

the public sector and finance.

Ross has a particular interest in the

pragmatic implementation of tools

and methods, Application portfolio

Management (APM), Business Process

driven change and the positioning

of successful EA departments within

organizations today. Ross has certification

in TOGAF, ArchiMate and COBIT along

with extensive implementation experience.

Access our free, extensive library at
www.orbussoftware.com/community

http://www.orbussoftware.com/community

© Orbus Software 20152

The primary driver behind incorrect metamodel selection is the desire to
implement a complex solution without the Enterprise Architecture (EA)
maturity level required and without a realistic plan to attain such maturity
quickly enough. Frameworks can outline the skills, roles and experience
levels an organization may wish to include in an architecture team, it may
be said in order to maximize the chances of success, such as TOGAF
with the Architecture Skills Framework [1]. Most other frameworks lack
such rigor.

In order to demonstrate the different levels of complexity offered by two
of the most popular enterprise architecture metamodels, TOGAF [2] and
ArchiMate [3], take the below example showing the different objects
which can be used to model an application from different perspectives:

This offers a level of detail which isn’t found in many other metamodels,
“the concepts of this language [ArchiMate] are sufficiently generic and
expressive to model many of the aspects within specific domains”
(Langkorst et al, 2013). In contrast to this, the TOGAF metamodel has
much less detail with regards to the objects used to model an application,
simply specifying a Logical Application Component and a Physical
Application Component as shown in the below metamodel extract:

In order to implement ArchiMate it could be said a higher level of
knowledge is required to ensure users are able to effectively build and
navigate the model vs. the TOGAF alternative. However with the level of
detail offered in ArchiMate the user community is able to use a greater
level of expression. The issue of complexity is not limited to TOGAF and
ArchiMate metamodels, there are many custom metamodels developed
by organizations and tool vendors, each with its own complexity level
which has a significant impact on tool adoption.

Fig1. Representation of ArchiMate Metamodel

Fig2 Representation of the TOGAF Metamodel

© Orbus Software 20153

Tip 2 – Select Suitable Modeling
Language(s) and Notation(s)
Which modeling language(s) and notation(s) an organization uses plays
a key role in the success of a tool implementation. Some languages are
understood best by those with specialist knowledge, such as UML which
is easier for those with a computer science back ground to understand
according to Fowler and Scott (1999). Others such as ArchiMate use
meaning as a way to communicate the language, which should enable a
broader audience to understand the notation without specific training, “We
do not put the notation of the ArchiMate language central, but rather focus
on the meaning of the language concepts and their relations” (Langkorst
et al, 2013). This is achieved by using color coding to highlight the role of
the object type for example the below is a central theme in ArchiMate:

 - Green is Passive Structure, defined as “An object on which
behavior is performed” [3]

 - Yellow is Behavior Element, defined as “a unit of activity performed
by one or more active structure elements” [3]

 - Blue is Active Structure, defined as “an entity that is capable of
performing behavior” [3]

There are many other languages, often used in conjunction with one
another, such as Business Process Modeling Notation (BPMN) and
Unified Modeling Language (UML), which focus on modeling specific
areas such as business process flows (BPMN) and Software Engineering
(UML). Typically an organization will select a set of languages according
to their needs and skills. This process is critical since the most
successful organizations select languages which they have had success
with before or which they have a prior knowledge of.

Once a set of languages have been selected, the user community
should ensure some shared level of understanding to avoid working in
silos, divided by the knowledge of a specific notation. As Langkorst et al
(2013) advises, the use of complex languages, which are difficult for non-
experts to understand “frequently leads to misunderstandings that hinder
the collaboration of architects and other stakeholders”.

Fig 3 ArchiMate [3] Architectural Framework

© Orbus Software 20154

Whichever modeling language and notation is selected, often the
first thing EA teams seek to do is to customize the language. Whilst
customization is often necessary, in order to deliver results quickly, as
a way to lessen the learning curve it introduces a level of confusion for
advanced users. These advanced users may fully grasp the intended
use of each object in the language and see some overlap between
the original objects and the customizations. As Gerben Wierda (2012)
warns “Only when you have enough experience are you capable of
really estimating the effect of the choices you have when changing the
language”

Tip 3 – Set Clear Standards and Guidelines
As an implementation consultant, communicating the importance
of standards and guidelines to support a tool is often a simple
task, however the definition of them is in reality a difficult and time
consuming task. Diligent tool implementation teams will often perform
a comprehensive review of current content in order to focus in on the
specific challenges the user community will face post implementation.
This is done by creating comprehensive documentation delivered in
an effective way, such as through a Microsoft SharePoint site, training
sessions or documents available through the tool for example.

Although the structure of documentation, to support your tool
implementation, isn’t the most important factor in the deployment,
the definition of the below documents has proven to be effective and
comprehensive in my experience:

Standards: A set of rules ,which must be adhered to, including for
example:

 - Mandatory metadata i.e. each business process must have a
description

 - Diagram structure i.e. each diagram must have one and only one
tab

 - Extensions to modeling language rules which your organization
mandates i.e. BPMN sub-processes must never be expanded

 - Metamodel dependencies i.e. all business services must have at
least one business process linked

 - Tool standards i.e. a document must never be checked out to one
user continuously for more than one week

Guidelines: A set of best practices, which should be adhered to,
including for example:

 - Suggested important Metadata i.e. the number of users an
application has should be populated

© Orbus Software 20155

 - Diagram structure i.e. where a heatmap is used, a legend should
always be added

 - Extensions to modeling language rules i.e. a shape should have the
connector added to the left edge where possible

 - Metamodel dependencies i.e. each application should be linked to
a logical application where possible

 - Tool standards i.e. each document should have a status

One example of the importance of rigor, in the development of modeling
standards and guidelines, was found when a project I was working with
was piloting the selected tool and they needed to model processes to
define the requirements for a system. Our selected viewpoints supported
process modeling from a human perspective, however failed to include the
simultaneous modeling of the human process and the system process.
This kind of oversight, as obvious as it sounds in hindsight, is easy to make
if insufficient stakeholder engagement and content review is performed.

Almost every tool implementation is backed up by an agreed set
of standards and guidelines, whether informal or well documented,
however the degree to which these standards and guidelines are
communicated and followed has a direct impact on the success of the
tool implementation project

Tip 4 – Governance
As important as agreed standards are, expect the community to create
non-compliant content. In the real world standards need to be enforced
not only to maintain the integrity of the tool, but also as a way to provide
feedback to the user community, helping to both drive education on your
chosen standards and methods and improve the quality of the content
produced by an architecture team.

The impact of a deviation from the standard is mostly minimal, however
over the course of time such deviations can become significant. Effective
governance is often centered around an automated core, implemented
not by one person but distributed among a team.

Governance stands out as a common theme among organizations who
have achieved successful tool implementation. Some useful techniques
can include:

 - Health check reporting

 - Diagrams reviews (peer or gatekeeper)

 - Content completeness reporting

 - Metamodel utilization reporting

 - Effective use of libraries to ‘fence off’ content prior to review

© Copyright 2015 Orbus Software. All rights reserved.

No part of this publication may be reproduced, resold, stored in a retrieval system, or distributed in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the copyright owner.

Such requests for permission or any other comments relating to the material contained in this document may be submitted
to: marketing@orbussoftware.com

Orbus Software
3rd Floor
111 Buckingham Palace Road
London
SW1W 0SR
United Kingdom

+44 (0) 870 991 1851
enquiries@orbussoftware.com
www.orbussoftware.com

Conclusion
During an Enterprise Architecture tool implementation, there are many
critical success factors, this white paper has attempted to outline some
considerations an organization may make when embarking upon an
implementation.

One of the main themes throughout this paper has been that there is
no ‘one size fits all’ for EA tool implementations, what works for one
organization may not work for another for reasons including maturity,
team structure and team goals.

While each implementation is unique, it has been observed that
successful organizations select suitable metamodels and notations, then
subsequently implement pragmatic standards and guidelines supported
by comprehensive governance procedures.

References
1. The Open Group (2011), The Open Group Architectural Framework

(TOGAF) Version 9.1. The Open Group, www.opengroup.org/togaf/

2. The Open Group (2012), ArchiMate 2.0 Specification, Technical
Standard, The Open Group, www.opengroup.org/archimate/

3. Langkorst et al 2013, Enterprise Architecture at Work, Modeling,
Communication and Analysis, 3rd Edition, Springer

4. Fowler M, Scott K (1999), UML Distilled: A Brief Guide to the
Standard Object Modeling Language, 2nd edition. Addison-Wesley

5. Gerben Wierda (2012), Mastering ArchiMate, 1st Edition

mailto:marketing@orbussoftware.com
mailto:enquiries@orbussoftware.com

www.orbussoftware.com
http://www.opengroup.org/togaf/
http://www.opengroup.org/archimate/

