
White Paper
Organizational Structure and
Repository Governance

Having a clear view of the current state architecture provides an
extremely valuable resource for planning new implementations and
responding to unforeseen circumstances – whether it’s a subsidiary
that is being sold and needs to disambiguate their systems, a company
scrambling to fulfill an impulsive promise made by the CEO on television,
or a government department working to deal with some government
crisis.

However, the problem with keeping a model of the current state is
that the reality is constantly being updated, whether the model is or
not. New implementations are rolled out from various groups on an
ongoing basis, which means that the organization has to invest effort in
maintaining the current state. Unless this is done in a formal way, with
consideration of how the architecture function will govern the process of
maintaining the current state, updates will not be made. More than once
I’ve encountered an organization with a beautiful, detailed model… that
just happens to be inaccurate because it’s not been kept in sync with the
reality. In which case, why bother in the first place?

In this paper, I will examine the challenges that exist, consider the two
main operating models and discuss what this implies for the features
you should look for when selecting the main architecture repository and
associated tooling.

Peter Harrad

WP0198 | September 2015

Peter has worked with modeling

standards and techniques throughout

his 20 years in IT, in a career that has

covered software development, solutions

architecture and international consulting.

Peter’s particular areas of interest are

opportunities arising from interdisciplinary

touchpoints, how to balance practicality

and rigor when modeling, and the

importance of viewpoints in addressing

different stakeholder perspectives.

Access our free, extensive library at
www.orbussoftware.com/community

http://www.orbussoftware.com/community

© Orbus Software 20152

Challenges with Maintaining
Current State
The analogy of rebuilding a 747 in flight is used enough that it has
almost become a cliché, but like most clichés, this is because it is so
apt. Projects are updating the current state on a regular basis. Different
groups will quite likely be making updates on different schedules. At
one organization where I worked, the infrastructure group released into
production project by project, as they were ready. The applications
division released once a month, every month. Except the directory
services part of the infrastructure division released with the applications
division releases, not on the model of the rest of their colleagues.

What this means is that without completely reworking the operating
practices of parts of the IT function, the mechanism for updating
the current state needs to take account of multiple, different update
schedules.

Now, possibly the key challenge that an organization faces in maintaining
a view of its current state architecture is that the architects who are
making changes are busy individuals. When you’re under a time
pressure, you look for ways to save time, and when a solutions architect
is faced with 6 projects, all requiring attention, it can be all too tempting
to put off updating a model ‘until tomorrow’. But tomorrow never comes.
Even if the architect buys into the need to provide an update, does the
project manager? What about the project sponsor? It’s all too possible
for updates to slip.

This means that there is a need to audit the projects that have gone live
and check that the current state reflects any changes that have been
made. Who performs this audit function will vary according to which of
the models below the organization has adopted. One technique that I’ve
seen adopted is to leverage the project tracking tool that the organization
uses, to include a way to record that the project has taken the necessary
actions required of them to support the current state maintenance.

The next issue with maintaining the current state is one of notifications.
As noted above, a significant reason for maintaining a current state
is to enable projects to plan the organization’s implementations more
effectively. This means that as the current state is updated, assumptions
that projects have made about the environment that they are deploying
into may no longer be valid. So ideally, governance of the current state
model should include a mechanism for projects to be made aware
of what change have been made, to enable them to perform impact
analysis.

© Orbus Software 20153

Centralized Current State Maintenance
The first way that organizations choose to maintain the current state is to
have a centralized individual or team that is responsible for maintaining
the current state. This is often found where there is a formal enterprise
architecture team, and maintaining the current state forms part of their
responsibilities. In this model, projects provide their architectures to
the central group, who update the current state model as each project
goes live.

This approach has the benefit that the people making the updates
will see it as a core aspect of their job (and if they are a true EA team,
charged with transformation as well, it can provide a useful tool for
such activities). The risk is that the central group is in danger of being
seen as yet another administrative burden – the ‘high priest’ syndrome.
To counter this, the central group should look for ways to support the
projects – for example, by helping with specific analyses. One example
I’m aware of is a US federal body; when the US government had a
shutdown in 2013, the chief architect (and manager of the current state)
was able to assist various groups in prioritizing which services to shut
down, based on his understanding of which user communities used
which services.

Distributed Current State Maintenance
Where things get more interesting is with the distributed approach.
Essentially, each architect is responsible for updating the current state
as their individual project goes live. This tends to exist where there is no
central function that could be assigned the role of performing updates
– hence the responsibility for maintaining the repository becomes a
collective one.

Centralized Maintenance

© Orbus Software 20154

At first glance, on paper this model can seem more attractive to
management, as it appears to distribute the extra workload fairly, adding
a small amount of overhead to each participant. However, it turns out to
require a level of extra effort – the need to audit and train staff.

The drawback with this approach, is that as mentioned above, if each
architect is responsible for making their own updates, there is the risk
that updates will not be made - for the reasons discussed earlier (time
pressure and higher priority tasks crowding out what is seen as an
administrative task). This means that whereas in the central model, there
is just a need to check that updates have been provided for each project,
something that can be done simply by checking email or file systems,
here *someone* needs to check that the updates have been made to the
current state. Whether this should be a role that is permanently assigned
to a group or individual, or a rotating job within each division, will depend
on the culture of the organization and managerial preferences.

The second consideration that appears in this approach is that merging
changes into an overall model can be complex. Architects do tend to be
an intelligent set of people, but merging changes in like this is yet another
hat for busy people to wear. The additional overhead can be helped by
providing a simple process map and set of guidelines for architects to
follow when making their updates.

Tool considerations
The past discussions have highlighted a variety of activities that different
roles within the organization need to undertake. Given that this topic is
centered on managing the architecture models, it is worth considering
how the architecture repository and modeling tool functionalities can
make the task easier. Actions such as updating the current state,
performing an audit and enforcing governance are all areas that can
benefit from specific tool functionality.

The first consideration that exists is that if the current state (describing
the current reality) and a project architecture (describing the planned

Distributed Maintenance

© Orbus Software 20155

reality) are to be managed within the same repository, the repository
needs to be able to keep multiple separate versions of the same item.
This allows projects to plan changes without actually editing the current
state model. For example, a given application might have a new interface
added by a project; until the interface is rolled out, the current state
should not reflect. Several of the repository-based modeling tools that
exist offer some mechanism to define different partitions with separate
copies of objects. For example, iServer has the libraries facility.

Keeping planned and current states separate is useful, but as discussed
earlier, the planned state changes will need to be applied to the current
state when the project becomes live. When this happens, the task is
greatly simplified if the tool has the ability to compare two models and
provide a list of differences – a gap analysis, in other words. TOGAF
does provide a template technique for gap analysis in chapter 27, but
the matrix format it uses is not ideal for readability: I have found that a
list format, as used by a couple of tools, works better from a usability
perspective.

The counterpart to the compare functionality is the ability to merge
changes from one model into another. This should never be a dumb,
purely automatic process; instead the architect needs the ability to veto
a given change being made (e.g. if a software level is upgraded by a
project, but it’s already been taken to an even more recent version, we
would not want to the merge functionality downgrading it). In an ideal
world, there would be a list of changes and the ability to confirm or deny
each one.

Notifications and conflict detection are another area where a tool can
greatly ease the burden. Specifically, the ability for architects to get
notified when certain items are updated in the current state; or even
notified when other planned architectures are using the same entities as
their project. This is, perhaps surprisingly, not a common feature currently
found in tools at this time; in such a case, an alternative approach is to
have access to a report that allows you to see what entities have been
updated in the current state since a given date – or what other projects
are planning changes to the same entities.

Depending on which model, centralized or distributed, exists, access
permissions may be extremely useful to ensure that only those who are
authorized to update a model, can update that model. This can also be a
requirement for organizations engaging in government work.

Last of all, and more important than access permissions is the tool’s
support for audit trails. A good tool will provide a record of each change
made to an entity, with a timestamp and the identity of the person
making the change.

Summary
The mechanisms for updating the current state model may need to cope
with different cadences of updates and ideally should enable notification
of changes to interested parties.

Organizations need to have an audit function to ensure that updates are
being provided (in the centralized model) or made (in the decentralized
model). This could be a single individual or group, or a rotating position
– the culture of the organization will affect this.

If centralized management is adopted, the central function should offer
ways to assist the functions, e.g. by using their specialized knowledge to
assist reporting.

Adjusting the organization’s project tracking tool to record that the
updates for the project have been provided (or made) is one way to ease
the audit burden.

Where the project review process is documented, a small change to
the process that includes having the project architect either making or
providing their update cements the need for this step.

Architecture repositories can assist the process of maintaining the
current state by providing functionality such as: partitioning, compare
and merge capabilities, notifications, audit trails and access control.

References
TOGAF chapter 27 – Gap Analysis

TOGAF chapter 41 – Architecture Repository

TOGAF chapter 50 – Architecture Governance

“A Federated Approach to Enterprise Architecture Model Maintenance” -
Ronny Fischer, Stephan Aier, Robert Winter

enquiries@orbussoftware.com | www.orbussoftware.com
Seattle Software Ltd. Victoria House, 50-58 Victoria Road, Farnborough, Hampshire, GU14 7PG. T/A Orbus Software. Registered in England and Wales 5196435

Orbus Software UK
London

Orbus Software US
New York

Orbus Software AUS
Sydney

Orbus Software RSA
Johannesburg

© Copyright 2015 Orbus Software. All rights reserved.

No part of this publication may be reproduced, resold, stored in a retrieval system,
or distributed in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior permission of the copyright owner.

Such requests for permission or any other comments relating to the material
contained in this document may be submitted to: marketing@orbussoftware.com

mailto:marketing%40orbussoftware.com?subject=RE%3A%20WP0198%20enquiry

