
White Paper
Architecture Modeling Crossovers

Enterprise Architecture is merely one discipline that attempts to govern
and use IT effectively. Others include configuration management, strategy
mapping, business process analysis... there are several. But the different
disciplines don’t exist independently of each other – there are overlaps.
Given that this is the case, there’s a natural impetus to consider sharing
information between the repositories of information that each of these
disciplines uses.

I’ve yet to encounter an architecture modeling tool that doesn’t offer
some kind of capability to import data from, and export data to, other
systems. Even open source, community-supported tools such as Archi
specifically discuss import/export in their documentation. However,
nothing in life comes without some kind of investment, and so the
question becomes one of what is the investment involved in setting up
such a transfer of data to or from an architecture model, and why do it?

In this paper I’ll reference my experiences with such integrations, and
examine what factors determine whether doing so is a useful investment,
or a pointless exercise. We’ll start out by examining what benefits you
can gain by architecture modeling and from this we can consider how
the value of an architectural model is enhanced by integrating with some
other information repository that covers an overlapping area.

Following this, I’ll examine the costs that exist in such an integration and the
questions that have to be considered in such a situation. This covers not
just the obvious costs such as time to create and schedule data extractions,
data transforms and data loads, but also the less obvious, indirect costs that
result from integrating information from multiple repositories.

Peter Harrad

WP0218	 |	 December 2015

Peter has worked with modeling

standards and techniques throughout

his 20 years in IT, in a career that has

covered software development, solutions

architecture and international consulting.

Peter’s particular areas of interest are

opportunities arising from interdisciplinary

touchpoints, how to balance practicality

and rigor when modeling, and the

importance of viewpoints in addressing

different stakeholder perspectives.

Access our free, extensive library at
www.orbussoftware.com/community

http://www.orbussoftware.com/community

© Orbus Software 20152

Last off, we’ll illustrate the discussion by examining five common
examples of such integrations, and how the benefits, costs and
considerations that we’ve identified apply to each of these five use cases.

Benefits of integrations
The first step is to consider what benefits we might gain from sharing
information between the architectural model and some other repository,
and to do this, we need to first remind ourselves the benefits of a model.
A model is a decision support tool – it facilitates planning and execution
by providing a representation of the operating environment. So, the
benefits of integrating with a different repository come from improving the
quality of the model or the ability of people to use it. There are several
ways that an integration can support this.

	 • �Reduced data collection costs. If another team has already
collected and is managing the data, the architecture team does not
have to expend the time and effort to collect it again.

	 • �Improved data quality. Enterprise Architecture necessarily cuts
across different domains (this being its primary purpose), but this
means that the EA practice is not specialized on a specific area.
If the information is collected by the team that specializes in that
area, they are going to be more able to detect anomalies and
inaccuracies.

	 • �Improved buy-in. If the architecture team can point to how they
are basing their models on the actual information used by other
teams, I’ve found this lends credibility to their efforts in the minds of
executives.

Challenges and costs of integration
The first issue with importing from other tools is the need for data
ownership. In other words, can the architecture team make or request
changes? And how are the two repositories kept in sync? There are two
options:

	 • �Changes can only be made in the source repository and then
propagated

	 • �Changes can be made in the architecture repository and then
propagated back to the source.

In general, the first approach works best, as it establishes clear
ownership and responsibility for the data. Tool considerations also come
into play on this question. In the first scenario above, the permissions
model of the architecture repository should ideally be able to prevent
changes to the imported information. Investigating what options are
available in this area should form part of any integration effort.

© Orbus Software 20153

The next question to address is what to import. It’s entirely likely that
only certain aspects of the imported information is relevant or useful for
the architecture model. It’s desirable to only import information that will
actually be used, for the simple reason that presenting people with a
sea of data fields makes it hard to locate the information that is actually
important.

A third aspect to consider is the nature and frequency of updates. If there’s
an online connection so that changes in one repository are automatically
reflected in a different one, then there’s no issue. But the majority of
import/export interfaces that I’ve seen are batch-based; in which case
decisions need to be taken on how frequently imports take place – which
will be driven by how often the information being imported changes.

Last of all, and coupled with the question of frequency is the question of
establishing what mechanism you will use to identify errors with the data
import that may occur.

Some common integration scenarios
To close this discussion, we’ll briefly examine some common scenarios
and how the considerations that we’ve discussed apply to them.

Integrating with a CMDB

Importing assets from a CMDB is one of the classic cases for an
architecture tool. A particular bonus here is that many CMDBs use
automated discovery, so the cost reduction and data quality aspects are
quite noticeable, as well as speaking to the level of trust executives place
in the data. So there are clear benefits from doing this.

Now let us consider the challenges. Data ownership questions can come
in the play – configuration items such as servers clearly belong in the
CMDB, but some product also allow definition of things such as business
services. But it’s the selection of what to import that poses the biggest
challenge here. CMDBs often include things such as ports, VLANs and
so on, and many EA tools will outright struggle to accurately model
route-port-VLAN mappings (after all, it’s not what they or standards like
TOGAF or ArchiMate were meant for). So a level of analysis and data
mapping will be necessary to ensure that the import is useful for the
architectural model. Frequency of updates is likely to be driven more
by the tempo of EA than the CMDB; the infrastructure is going to be
receiving updates on a daily basis. Last of all, error handling mechanisms
don’t present any special considerations.

Overall then, the CMDB is a strong candidate for integration with the
architecture model.

© Orbus Software 20154

Process Re-engineering

The touchpoint between architecture modeling and process modeling is an
interesting one once you reach the Enterprise Architecture level. In particular,
many EA tools incorporate support for process mapping, so the two teams
may well be working in the same repository. If this is the case, the tool owner
will need to take care to establish appropriate partitioning to enable the
two teams to work in a sufficiently decoupled manner. The benefits of data
quality and data collection are clear, but the executive buy-in factor is the key
benefit for aligning an architecture model with a process initiative.

In regards to the challenges, data ownership may or may not be an issue.
There are some frameworks, such as IBM’s Information Framework (IFW)
that depend on defining reusable business tasks that are incorporated
into end-to-end business processes. Defining what to import is not a
complex area, but one where clarity is necessary. However, adopting this
governance mechanism does answer the question around frequency of
updates and means that error handling is rarely a concern. While defining
a process map is often a part of requirements definition at the solution
architecture level, enterprise architecture takes a higher-level view; it’s the
overall processes that the process team identify that will form part of the
architecture model, not the task-level entities.

Overall then, process engineering offers noticeable potential benefits,
particularly as regards executive buy-in, but also requires the introduction
of good governance mechanisms.

Project Planning Integration

Integrating the project catalog with the architecture model is an
interesting case, as the value of doing so depends wholly on the scope
of the architecture effort. It provides benefits around data quality and
data collection costs (and buy-in) – if the projects are worth tracking
at all. This is only going to be the case if the architecture model has
reached the level of explicitly modeling roadmapping and architecture
planning. This is not always the case.

Now let’s examine the challenges involved. There are going to be clear issues
around data ownership. In a lot of ways, the touchpoint between project
planning and the overall architecture model speaks directly to the overall
governance of both. As with process modeling, the governance mechanism
adopted will also define when updates cascade from project tracking to
the architecture model. Data mapping issues will also be an important
consideration – mapping the work items and affected items will likely be a
manual process that will have to be addressed as part of the governance.
Error handling, at least, does not present particular considerations.

In summary then, a tie-in to project planning requires the same
introduction of good governance mechanisms as process planning, but
the benefits will depend on whether roadmapping and transition planning
is seen as a key focus for the architecture team.

© Orbus Software 20155

Software inventory systems

Software inventory systems are another classic sweet spot for integration
with architecture modeling. The work that such an effort does to identify
the applications used by an organization and their attributes will clearly
benefit architecture decisions…but the mapping from applications to
processes, data and so on that the architecture repository contains will
help the software inventory effort in evaluating the value and costs of the
applications they consider. Both factors speak to the trust that business
leadership will have in this catalog. So – a very strong candidate for
adoption; in fact, it’s not unusual that the application inventory is
managed within the architecture repository itself.

Updates will likely face the same tempo; and error handling on import will
either have no special considerations or no considerations at all if the two
efforts are working off the same dataset. Likewise, there are generally
little or no problems with needing to filter what information is recorded.
The challenges are going to lie in the human aspect – and who is allowed
to update the information, under what mechanisms.

Overall then, software inventory systems are the strongest candidate for
integration with the architecture model out of our five cases.

Strategy maps and business model canvases

Integrating the strategy maps and business model canvases that
the organization uses to determine its direction would seem to be
an excellent candidate at first – after all, the dream of EA is to drive
IT architecture from business considerations. However, in practice it
requires a significant investment. Let’s start by considering the potential
benefits. Data quality, data collection costs and executive buy-in all
benefit greatly from reusing such artefacts – assuming that they exist.

But the challenges are significant. Data ownership is clear – the executive
suite and their consultants own the information contained within – but
this leads to significant questions around data updates. Specifically, how
to ensure that the architecture team are kept aware of the current version
of thinking in the area? They’ll need to engage in a certain level of selling
the benefits of providing this information to them. The second major
challenge comes from data selection – in so far as deciding how the
often unstructured data contained in such artefacts are mapped to the
metamodel of the architecture repository. Essentially, it requires teasing
out a high degree of precision from people and artefacts that don’t think
precisely. So, while there is decent potential payoff, there is a significant
initial and ongoing investment involved in integrating the two efforts.

Overall then, strategy maps and business model canvases seem
like a strong candidate at first, but will require significant investment
to implement. Consequently it will need a high degree of executive
enthusiasm to justify doing so.

Conclusion
The benefits of integrating your architecture model with other information
sources come from the following sources:

	 • �Reduced data collection costs – reusing information from another
source removes the need to collect it

	 • �Improved data quality – bringing in information from a more
specialized source can often mean that the data itself is of a higher
quality

	 • �Improved buy-in – using the information from another groups’
repository reassures executives as to model accuracy.

But each integration is going to present certain challenges, these being:

	 • �Establishing data ownership – including investigating what
options to architecture tool has to prevent changes to imported data

	 • �Selecting the appropriate information to import and
appropriate mapping to the architecture metamodel – to keep
a high ‘signal to noise’ ratio

	 • �Defining frequency of updates – driven primarily by the volatility of
the data concerned

	 • �Incorporating mechanisms for error handling – everything
breaks from time to time – how is this catered for?

Developing an architecture model involves the creation of an
informational asset for the organization, and just as organizations look to
improve efficiency by integrating their overall information silos, it’s natural
that architecture teams think in terms of leveraging the asset that they
are creating in the same way.

By applying the factors outlined earlier in this paper, we’ve seen in five
different examples how an organization can make an evaluation of
whether such an integration is necessary, and if it is, the priority it needs
to be given as a work item.

enquiries@orbussoftware.com | www.orbussoftware.com
Seattle Software Ltd. Victoria House, 50-58 Victoria Road, Farnborough, Hampshire, GU14 7PG. T/A Orbus Software. Registered in England and Wales 5196435

Orbus Software UK
London

Orbus Software US
New York

Orbus Software AUS
Sydney

Orbus Software RSA
Johannesburg

© Copyright 2015 Orbus Software. All rights reserved.

No part of this publication may be reproduced, resold, stored in a retrieval system,
or distributed in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior permission of the copyright owner.

Such requests for permission or any other comments relating to the material
contained in this document may be submitted to: marketing@orbussoftware.com

mailto:marketing%40orbussoftware.com?subject=RE%3A%20WP0218%20enquiry

